Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving
The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approa...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-08, Vol.146 (31), p.21989-21998 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m–2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.4c07255 |