Observation of a Reversible Order‐Order Transition in a Metal‐Organic Framework – Ionic Liquid Nanocomposite Phase‐Change Material
Metal‐organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene‐...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (43), p.e2303315-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal‐organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene‐1,3,5‐tricarboxylate) and [EMIM][TFSI] (1‐ethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition – absent for the bare MOF or IL – provides an extended super‐cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C. Structural analysis and in situ monitoring indicate an electrostatic interaction between the IL molecules and the Cu paddle‐wheels, leading to a decrease in pore symmetry at low temperature. These interactions are reversibly released above the transition temperature, which reflects in a volume expansion of the MOF‐IL composite.
A reversible order transition is reported for an IL@MOF composite, absent for the bare MOF or IL, providing an extended super‐cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202303315 |