Low‐Dispersity Polymers via Free Radical Alternating Copolymerization: Effects of Charge‐Transfer‐Complexes

Alternating copolymers are crucial for diverse applications. While dispersity (Ð, also known as molecular weight distribution, MWD) influences the properties of polymers, achieving low dispersities in alternating copolymers poses a notable challenge via free radical polymerizations (FRPs). In this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, Vol.63 (42), p.e202409744-n/a
Hauptverfasser: Gu, Yu, Zhang, Zexi, Gao, Tianyi, Gómez‐Bombarelli, Rafael, Chen, Mao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alternating copolymers are crucial for diverse applications. While dispersity (Ð, also known as molecular weight distribution, MWD) influences the properties of polymers, achieving low dispersities in alternating copolymers poses a notable challenge via free radical polymerizations (FRPs). In this work, we demonstrated an unexpected discovery that dispersities are affected by the participation of charge transfer complexes (CTCs) formed between monomer pairs during free radical alternating copolymerization, which have inspired the successful synthesis of various alternating copolymers with low dispersities (>30 examples, Ð=1.13–1.39) under visible‐light irradiation. The synthetic method is compatible with binary, ternary and quaternary alternating copolymerizations and is expandable for both fluorinated and non‐fluorinated monomer pairs. DFT calculations combined with model experiments indicated that CTC‐absent reaction exhibits higher propagation rates and affords fewer radical terminations, which could contribute to low dispersities. Based on the integration of Monte Carlo simulation and Bayesian optimization, we established the relationship map between FRP parameter space and dispersity, further suggested the correlation between low dispersities and higher propagation rates. Our research sheds light on dispersity control via FRPs and creates a novel platform to investigate polymer dispersity through machine learning. A photo‐induced free radical polymerization was established to enable scalable preparation of alternating copolymers across low to high dispersities, compatible with fluorinated/non‐fluorinated monomers and binary/ternary/quaternary copolymerizations. The correlation between dispersity control and charge transfer complexes was elucidated through DFT calculations, model experiments and Monte Carlo simulation‐based machine learning methods.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202409744