Targeted reprogramming of tumor-associated macrophages for overcoming glioblastoma resistance to chemotherapy and immunotherapy
The resistance of glioblastoma multiforme (GBM) to standard chemotherapy is primarily attributed to the existence of tumor-associated macrophages (TAMs) in the GBM microenvironment, particularly the anti-inflammatory M2 phenotype. Targeted modulation of M2-TAMs is emerging as a promising strategy to...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2024-12, Vol.311, p.122708, Article 122708 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The resistance of glioblastoma multiforme (GBM) to standard chemotherapy is primarily attributed to the existence of tumor-associated macrophages (TAMs) in the GBM microenvironment, particularly the anti-inflammatory M2 phenotype. Targeted modulation of M2-TAMs is emerging as a promising strategy to enhance chemotherapeutic efficacy. However, combination TAM-targeted therapy with chemotherapy faces substantial challenges, notably in terms of delivery efficiency and targeting specificity. In this study, we designed a pH-responsive hierarchical brain-targeting micelleplex loaded with temozolomide (TMZ) and resiquimod (R848) for combination chemo-immunotherapy against GBM. This delivery system, termed PCPA&PPM@TR, features a primary Angiopep-2 decoration on the outer layer via a pH-cleavable linker and a secondary mannose analogue (MAN) on the middle layer. This pH-responsive hierarchical targeting strategy enables effective BBB permeability while simultaneous GBM- and TAMs-targeting delivery. GBM-targeted delivery of TMZ induces alkylation and triggers an anti-GBM immune response. Concurrently, TAM-targeted delivery of R848 reprograms their phenotype from M2 to pro-inflammatory M1, thereby diminishing GBM resistance to TMZ and amplifying the immune response. In vivo studies demonstrated that targeted modulation of TAMs using PCPA&PPM@TR significantly enhanced anti-GBM efficacy. In summary, this study proposes a promising brain-targeting delivery system for the targeted modulation of TAMs to combat GBM. |
---|---|
ISSN: | 0142-9612 1878-5905 1878-5905 |
DOI: | 10.1016/j.biomaterials.2024.122708 |