Cyanobacteria mediate the dissemination of bacterial antibiotic resistance through conjugal transfer
Cyanobacterial blooms are expanding world-wide in freshwater and marine environments, and can cause serious ecological and environmental issues, which also contribute to the spread of antibiotic resistance genes (ARGs). However, the mechanistic understanding of cyanobacteria-mediated resistance dyna...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2024-10, Vol.359, p.124592, Article 124592 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyanobacterial blooms are expanding world-wide in freshwater and marine environments, and can cause serious ecological and environmental issues, which also contribute to the spread of antibiotic resistance genes (ARGs). However, the mechanistic understanding of cyanobacteria-mediated resistance dynamics is not fully elucidated yet. We selected Microcystis aeruginosa as a model cyanobacteria to illustrate how cyanobacteria mediate the evolution and transfer processes of bacterial antibiotic resistance. The results show that the presence of cyanobacteria significantly decreased the abundance of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by 3%–99% and 2%–18%, respectively. In addition, it clearly altered bacterial community structure, with the dominant genera evolving from Acinetobacter (27%) and Enterobacter (42%) to Porphyrobacter (59%). The abundance of ARGs positively correlated with Proteobacteria and Firmicutes, rather than Cyanobacteria, and Bacteroidetes. In the presence of cyanobacteria, the transfer events of bacterial resistance genes via conjugation were found to decrease by 10%–89% (p |
---|---|
ISSN: | 0269-7491 1873-6424 1873-6424 |
DOI: | 10.1016/j.envpol.2024.124592 |