Hydration-Accelerated Crown Ether Diffusion within Single Three-Dimensional Covalent Organic Frameworks
In this contribution, we report on the visualization of 12-crown-4 molecular diffusion behavior within a single-crystal particle of covalent organic framework-300 (COF-300) using operando dark-field optical microscopy. The diffusion area and front of 12-crown-4 are directly tracked in real time, off...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-08, Vol.24 (31), p.9505-9510 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this contribution, we report on the visualization of 12-crown-4 molecular diffusion behavior within a single-crystal particle of covalent organic framework-300 (COF-300) using operando dark-field optical microscopy. The diffusion area and front of 12-crown-4 are directly tracked in real time, offering key information for quantifying the diffusion coefficient (D). The direction of the diffusion and variation of D reveal intraparticle and interparticle heterogeneity. Notably, an unexpected hydration-accelerated diffusion process of 12-crown-4 within the pore channels of COF-300 is captured, in which a relatively low concentration of 12-crown-4 aqueous solution induces a fast diffusion, whereas the pure 12-crown-4 liquid cannot access the framework. The observed acceleration diffusion is demonstrated to arise from the hydrogen-bonding interactions between surface water molecules of hydrated 12-crown-4 and the imine groups of COF-300. These findings expand the mechanistic understanding of the noncovalent interactions between COFs and crown ethers (CEs), which will help to design and prepare CE-based COFs with improved performance. |
---|---|
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/acs.nanolett.4c01897 |