Caffeic acid inhibits the tumorigenicity of triple-negative breast cancer cells through the FOXO1/FIS pathway

Triple-negative breast cancer (TNBC) still one of the most challenging sub-type in breast cancer clinical. Caffeic acid (CA) derived from effective components of traditional Chinese herbal medicine has been show potential against TNBCs. Our research has found that CA can inhibit the proliferation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2024-09, Vol.178, p.117158, Article 117158
Hauptverfasser: Xie, Chufei, Chan, Liujia, Pang, Yuheng, Shang, Yuefeng, Cao, Weifang, Tuohan, Marmar, Deng, Qian, Wang, Yuji, Zhao, Lichun, Wang, Wenjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triple-negative breast cancer (TNBC) still one of the most challenging sub-type in breast cancer clinical. Caffeic acid (CA) derived from effective components of traditional Chinese herbal medicine has been show potential against TNBCs. Our research has found that CA can inhibit the proliferation of TNBC cells while also suppressing the size of cancer stem cell spheres. Additionally, it reduces reactive oxygen species (ROS) levels and disruption of mitochondrial membrane potential. Simultaneously, CA influences the stemness of TNBC cells by reducing the expression of the stem cell marker protein CD44. Furthermore, we have observed that CA can modulate the FOXO1/FIS signaling pathway, disrupting mitochondrial function, inducing mitochondrial autophagy, and exerting anti-tumor activity. Additionally, changes in the immune microenvironment were detected using a mass cytometer, we found that CA can induce M1 polarization of macrophages, enhancing anti-tumor immune responses to exert anti-tumor activity. In summary, CA can be considered as a lead compound for further research in targeting TNBC.
ISSN:0753-3322
1950-6007
1950-6007
DOI:10.1016/j.biopha.2024.117158