Copper oxide nanoparticles mitigate cadmium toxicity in rice seedlings through multiple physiological mechanisms

Heavy metal pollution poses a serious threat to crops growth and yield. Recently, nanoparticles (NPs) have emerged as a promising strategy to mitigate the negative effect of heavy metal on crop growth. This study investigated the beneficial effects of copper oxide nanoparticles (CuO NPs) on the morp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-08, Vol.31 (36), p.49026-49039
Hauptverfasser: Jia, Xiangwei, He, Junyu, Yan, Tengyu, Lu, Dandan, Xu, Haojie, Li, Ke, Ren, Yanfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy metal pollution poses a serious threat to crops growth and yield. Recently, nanoparticles (NPs) have emerged as a promising strategy to mitigate the negative effect of heavy metal on crop growth. This study investigated the beneficial effects of copper oxide nanoparticles (CuO NPs) on the morphological and physiological-biochemical traits of rice seedlings ( Oryza sativa L.) under cadmium (Cd) stress. The results demonstrated that the application of CuO NPs increased the contents of nutrition elements in shoots and roots as well as photosynthetic pigments, consequently improving the growth of rice seedlings under Cd stress, especially at low level of Cd stress. Meanwhile, CuO NPs obviously decreased the Cd accumulation in the rice seedlings and immobilized Cd in less toxic chemical forms and subcellular compartments. Moreover, CuO NPs modulated the antioxidant system, ameliorating oxidative damage and membrane injury caused by Cd. Multivariate analysis established correlations between physio-biochemical parameters and further revealed the mitigation of Cd damage to rice seedlings by CuO NPs was associated with inhibition Cd accumulation, altering Cd chemical form and subcellular distribution, increasing the contents of mineral nutrients, photosynthetic pigments and secondary metabolites and antioxidant enzyme activities, and reducing oxidative damage. Overall, the present study indicated that CuO NPs could effectively reduce the Cd toxicity to rice seedlings, demonstrating their potential application in agricultural production.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-34412-5