Biogeographic and co-occurrence network differentiation of fungal communities in warm-temperate montane soils

Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-10, Vol.948, p.174911, Article 174911
Hauptverfasser: He, Libing, Sun, Xiangyang, Li, Suyan, Zhou, Wenzhi, Yu, Jiantao, Zhao, Guanyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fungal communities to altitude and soil depth, and the co-occurrence patterns influencing soil fungal metabolic preferences on Dongling Mountain. We observed significant variations in fungal β-diversity, driven by elevation and soil depth, with climatic parameters (MAT and MAP) and nutrient concentrations (TOC, TP, and TN) serving as prominent influencers. Additionally, we found that the multiple substrate-induced respiration rate of fungi degrading various carbon substrates was diminished in high-altitude and subsurface soils compared to low-altitude and surface soils. Stochastic processes play a more important role in controlling fungal community assembly than deterministic processes, with dispersal limitation emerging as the main driver of community assembly. While greater network complexity was evident in the topsoil compared to the subsoil, both layers harbored altitude-sensitive OTUs (asOTUs) that belonging to distinct modules. Moreover, fungal groups sensitive to the same altitude exhibited similar metabolic preferences. The asOTUs designated for lower altitude areas favored unstable carbon substrates (glucose and sucrose), while those designated as higher altitude areas exhibited a preference for recalcitrant carbon (xylan and lignin). This evidence suggests that soil fungal communities respond to environmental changes by trading off their life strategies and metabolic characteristics. [Display omitted] •Fungal multiple substrate-induced respiration rate was reduced at high altitudes.•Stochastic processes had a more noticeable impact on fungal community assembly.•Greater network complexity was evident in the topsoil compared to the subsoil.•Fungal groups sensitive to the same altitude exhibit similar metabolic preferences.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.174911