Fluorogenic Rhodamine-Based Chemigenetic Biosensor for Monitoring Cellular NADPH Dynamics
Ratiometric biosensors employing Förster Resonance Energy Transfer (FRET) enable the real-time tracking of metabolite dynamics. Here, we introduce an approach for generating a FRET-based biosensor in which changes in apparent FRET efficiency rely on the analyte-controlled fluorogenicity of a rhodam...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-07, Vol.146 (30), p.20569-20576 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ratiometric biosensors employing Förster Resonance Energy Transfer (FRET) enable the real-time tracking of metabolite dynamics. Here, we introduce an approach for generating a FRET-based biosensor in which changes in apparent FRET efficiency rely on the analyte-controlled fluorogenicity of a rhodamine rather than the commonly used distance change between donor–acceptor fluorophores. Our fluorogenic, rhodamine-based, chemigenetic biosensor (FOCS) relies on a synthetic, protein-tethered FRET probe, in which the rhodamine acting as the FRET acceptor switches in an analyte-dependent manner from a dark to a fluorescent state. This allows ratiometric sensing of the analyte concentration. We use this approach to generate a chemigenetic biosensor for nicotinamide adenine dinucleotide phosphate (NADPH). FOCS-NADPH exhibits a rapid and reversible response toward NAPDH with a good dynamic range, selectivity, and pH insensitivity. FOCS-NADPH allows real-time monitoring of cytosolic NADPH fluctuations in live cells during oxidative stress or after drug exposure. We furthermore used FOCS-NADPH to investigate NADPH homeostasis regulation through the pentose phosphate pathway of glucose metabolism. FOCS-NADPH is a powerful tool for studying NADPH metabolism and serves as a blueprint for the development of future fluorescent biosensors. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.3c13137 |