Composition Heterogeneity of Metal Ions Bound at the Oxygen-Evolving Center of Photosystem II in Living Cells
Recent resolution advancement of in situ cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) enables us to visualize large enzymes-in-action in atomic detail in their native environments inside living cells, such as photosystem II (PSII) and the ribosome. A variety of crystallo...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2024-08, Vol.63 (15), p.1963-1968 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent resolution advancement of in situ cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) enables us to visualize large enzymes-in-action in atomic detail in their native environments inside living cells, such as photosystem II (PSII) and the ribosome. A variety of crystallographic and cryo-EM structures of PSII have been published for the purified PSII dimeric core complexes by itself, in supercomplexes with photosystem I (PSI) and light-harvesting complexes (LHC), and in megacomplexes with phycobilisome (PBS). In the latter case, two or five copies of asymmetric dimeric PSII molecules are present in highly asymmetric environments that differ from other 2-fold symmetric structures. Previous systematic analysis of X-ray free-electron laser (XFEL) crystal structures of PSII has shown different degrees of composition heterogeneity of metal ion cofactor bound at the oxygen-evolving center (OEC), including between two monomers of the same PSII dimer. This study analyzed the metal ions bound at four OECs in two asymmetric dimeric PSII molecules within in situ cryo-ET structures reported for an asymmetric PBS-PSII-PSI-LHC megacomplex determined in a living organism without purification and shows that composition heterogeneity with reduced metal ion occupancies at the OEC of PSII is a general phenomenon. This finding could have profound implications for spectroscopic interpretations of unpurified PSII samples. |
---|---|
ISSN: | 0006-2960 1520-4995 1520-4995 |
DOI: | 10.1021/acs.biochem.4c00261 |