Bayesian multivariate receptor model and convolutional neural network to identify quantitative sources and spatial distributions of potentially toxic elements in soils: A case study in Qingzhou City, China
Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RB...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-09, Vol.476, p.135184, Article 135184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RBMRM) was applied to the soil dataset of Qingzhou City (8 PTEs in 429 samples), to calculate source contributions with uncertainties. Multi-task convolutional neural network (MTCNN) was proposed to predict spatial distributions of soil PTEs. RBMRM afforded three sources, consistent with US-EPA positive matrix factorization. Natural source dominated As, Cr, Cu, and Ni contents (78.5 %∼86.1 %), and contributed 37.1 %, 61.0 %, and 65.9 % of Cd, Pb, and Zn, exhibiting low uncertainties with uncertainty index (UI) |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.135184 |