Entropic timescales of dynamic heterogeneity in supercooled liquid
Non-Gaussian displacement distributions are universal predictors of dynamic heterogeneity in slowly varying environments. Here, we explore heterogeneous dynamics in supercooled liquid using molecular dynamics simulations and show the efficiency of the relative-entropy based measure, negentropy, in q...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2024-06, Vol.109 (6), p.L062102, Article L062102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-Gaussian displacement distributions are universal predictors of dynamic heterogeneity in slowly varying environments. Here, we explore heterogeneous dynamics in supercooled liquid using molecular dynamics simulations and show the efficiency of the relative-entropy based measure, negentropy, in quantifying dynamic heterogeneity over the widely used non-Gaussian parameter. Our analysis shows that the heterogeneity quantified by the negentropy is significantly different from the one obtained using the conventional moment-based definition that considers deviation from Gaussianity up to lower-order moments. We extract the timescales of dynamic heterogeneity using the two methods and show that the differential changes diverge as the system experiences strong intermittency near the glass transition. Further, we interpret the entropic timescales and discuss the general implications of our work. |
---|---|
ISSN: | 2470-0045 2470-0053 2470-0053 |
DOI: | 10.1103/PhysRevE.109.L062102 |