Computational 3D Models of Fe2+/3+-Aβ1–42 Complexes Associated with Alzheimer’s Disease

The interaction between iron and amyloid-beta (Aβ) peptides has received significant attention in Alzheimer’s disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aβ1–42 have not been thoroughly investigated or remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-07, Vol.128 (29), p.7022-7032
Hauptverfasser: Puello-Silva, Jorge, Alí-Torres, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between iron and amyloid-beta (Aβ) peptides has received significant attention in Alzheimer’s disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aβ1–42 have not been thoroughly investigated or remain unknown. This study employs a computational protocol that combines homology modeling techniques with quantum mechanics (DTF-xTB) calculations to build and evaluate several 3D models of Fe2+/3+-Aβ1–42. Our results reveal well-defined complexes for both the metal and peptide moieties, and we discuss the molecular interactions stabilizing these complexes by elucidating the coordinating environments and binding preferences. These proposed models offer valuable insights into the role of iron in Alzheimer’s disease (AD) pathology.
ISSN:1520-6106
1520-5207
1520-5207
DOI:10.1021/acs.jpcb.4c01173