Preparation of pyridoxine-based polyurethane modified sensors and their use in simultaneous determination of Cu(II) – Co(II) ions

In this study, pyridoxine-based polyurethane-modified electrodes were prepared to simultaneously and sensitively measure copper (Cu(II)) and cobalt (Co(II)) ions in complex matrix samples. For the production of the electrodes, firstly, the synthesis of pyridoxine-based polyurethane structures was ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2024-10, Vol.278, p.126520, Article 126520
Hauptverfasser: Kuyumcu Savan, Ebru, Kazıcı, Dilek, Özcan, İmren, Bayram, Songül, Köytepe, Süleyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, pyridoxine-based polyurethane-modified electrodes were prepared to simultaneously and sensitively measure copper (Cu(II)) and cobalt (Co(II)) ions in complex matrix samples. For the production of the electrodes, firstly, the synthesis of pyridoxine-based polyurethane structures was carried out. In these syntheses, the polymer structure was diversified by using different isocyanates. Polyethyleneglycol-200 (PEG), pyridoxine (B6), and β-cyclodextrin (β-CD) groups were used as the source of polyol. The synthesized polyurethane structures were characterized by different instrumental techniques and used in gold electrode surface modification. Modified sensor surfaces were examined by scanning electron microscopy and atomic force microscopy techniques. The prepared modified sensors were used for the simultaneous detection of Cu(II) and Co(II) ions using the differential pulse voltammetry technique. The limit of detection (LOD), limit of quantitation (LOQ), and R2 values for Cu(II) ions were calculated as 8.81 μM, 29.4 μM, and 0.993, respectively. LOD, LOQ, and R2 values for Co(II) ions were calculated as 9.84 μM, 32.8 μM, and 0.9935, respectively. For repeatability, the relative standard deviation (RSD %) of the prepared simultaneous sensors was determined as 1.54 and 1.71 for Cu(II) and Co(II), respectively. As a result, Cu(II) and Co(II) ions were measured independently and simultaneously with high sensitivity. According to these results, it is predicted that pyridoxine-based polyurethane-modified sensors may be suitable for the simultaneous detection of Cu(II) and Co(II) in medical, food, and agricultural samples. [Display omitted] •A new pyridoxine-based polyurethane-modified sensor was designed.•Differential pulse voltammetry was performed for the simultaneous determination of copper and cobalt.•Method provided high accuracy, sensitivity and selectivity.•The pyridoxine-based polyurethane-modified sensor is easy to prepare and has high stability.
ISSN:0039-9140
1873-3573
1873-3573
DOI:10.1016/j.talanta.2024.126520