Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis

Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-07, Vol.146 (29), p.20379-20390
Hauptverfasser: Yu, Peng-Cheng, Zhang, Xiao-Long, Zhang, Tian-Yun, Tao, Xu-Ying-Nan, Yang, Yu, Wang, Ye-Hua, Zhang, Si-Chao, Gao, Fei-Yue, Niu, Zhuang-Zhuang, Fan, Ming-Hui, Gao, Min-Rui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20390
container_issue 29
container_start_page 20379
container_title Journal of the American Chemical Society
container_volume 146
creator Yu, Peng-Cheng
Zhang, Xiao-Long
Zhang, Tian-Yun
Tao, Xu-Ying-Nan
Yang, Yu
Wang, Ye-Hua
Zhang, Si-Chao
Gao, Fei-Yue
Niu, Zhuang-Zhuang
Fan, Ming-Hui
Gao, Min-Rui
description Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.
doi_str_mv 10.1021/jacs.4c05983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081300460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081300460</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-121f5101258590aeec2f4905534071704464881c2eb2aa27a54864ed434c4a483</originalsourceid><addsrcrecordid>eNptkDtPwzAURi0EgvLYmFFGBlJ8_UidsVTlIVFggDm6dZ2SKomL7aD23-PSAguTZd3zfdc-hJwD7QNlcL1A7ftCU5krvkd6IBlNJbBsn_QopSwdqIwfkWPvF_EqmIJDcsRzCpBz6JHVUxWcnZs2nZhZhcHMkhdnGxsq2ya2TEZ2inVIb9DHyfNqHclk_Gnr7hsYYcB67UNSWhdzqEOlsU6GbRym45V-x3Zukolppg5bk4xro-O2mKj8KTkosfbmbHeekLfb8evoPn18vnsYDR9TZAAhBQalBApMKplTNEazUuRUSi7oAAZUiEwoBZqZKUNkA5RCZcLMBBdaoFD8hFxue5fOfnTGh6KpvDZ1HR9kO19wqoBHMRmN6NUW1c5670xZLF3VoFsXQIuN62Ljuti5jvjFrrmbNmb2C__I_Vu9SS1s59r40f-7vgCAR4dn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081300460</pqid></control><display><type>article</type><title>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Yu, Peng-Cheng ; Zhang, Xiao-Long ; Zhang, Tian-Yun ; Tao, Xu-Ying-Nan ; Yang, Yu ; Wang, Ye-Hua ; Zhang, Si-Chao ; Gao, Fei-Yue ; Niu, Zhuang-Zhuang ; Fan, Ming-Hui ; Gao, Min-Rui</creator><creatorcontrib>Yu, Peng-Cheng ; Zhang, Xiao-Long ; Zhang, Tian-Yun ; Tao, Xu-Ying-Nan ; Yang, Yu ; Wang, Ye-Hua ; Zhang, Si-Chao ; Gao, Fei-Yue ; Niu, Zhuang-Zhuang ; Fan, Ming-Hui ; Gao, Min-Rui</creatorcontrib><description>Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c05983</identifier><identifier>PMID: 39011931</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-07, Vol.146 (29), p.20379-20390</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-121f5101258590aeec2f4905534071704464881c2eb2aa27a54864ed434c4a483</cites><orcidid>0000-0003-4831-6314 ; 0000-0002-7805-803X ; 0000-0002-5596-0776 ; 0000-0002-3691-108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c05983$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c05983$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39011931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Zhang, Tian-Yun</creatorcontrib><creatorcontrib>Tao, Xu-Ying-Nan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Ye-Hua</creatorcontrib><creatorcontrib>Zhang, Si-Chao</creatorcontrib><creatorcontrib>Gao, Fei-Yue</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><title>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkDtPwzAURi0EgvLYmFFGBlJ8_UidsVTlIVFggDm6dZ2SKomL7aD23-PSAguTZd3zfdc-hJwD7QNlcL1A7ftCU5krvkd6IBlNJbBsn_QopSwdqIwfkWPvF_EqmIJDcsRzCpBz6JHVUxWcnZs2nZhZhcHMkhdnGxsq2ya2TEZ2inVIb9DHyfNqHclk_Gnr7hsYYcB67UNSWhdzqEOlsU6GbRym45V-x3Zukolppg5bk4xro-O2mKj8KTkosfbmbHeekLfb8evoPn18vnsYDR9TZAAhBQalBApMKplTNEazUuRUSi7oAAZUiEwoBZqZKUNkA5RCZcLMBBdaoFD8hFxue5fOfnTGh6KpvDZ1HR9kO19wqoBHMRmN6NUW1c5670xZLF3VoFsXQIuN62Ljuti5jvjFrrmbNmb2C__I_Vu9SS1s59r40f-7vgCAR4dn</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Yu, Peng-Cheng</creator><creator>Zhang, Xiao-Long</creator><creator>Zhang, Tian-Yun</creator><creator>Tao, Xu-Ying-Nan</creator><creator>Yang, Yu</creator><creator>Wang, Ye-Hua</creator><creator>Zhang, Si-Chao</creator><creator>Gao, Fei-Yue</creator><creator>Niu, Zhuang-Zhuang</creator><creator>Fan, Ming-Hui</creator><creator>Gao, Min-Rui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4831-6314</orcidid><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0002-5596-0776</orcidid><orcidid>https://orcid.org/0000-0002-3691-108X</orcidid></search><sort><creationdate>20240724</creationdate><title>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</title><author>Yu, Peng-Cheng ; Zhang, Xiao-Long ; Zhang, Tian-Yun ; Tao, Xu-Ying-Nan ; Yang, Yu ; Wang, Ye-Hua ; Zhang, Si-Chao ; Gao, Fei-Yue ; Niu, Zhuang-Zhuang ; Fan, Ming-Hui ; Gao, Min-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-121f5101258590aeec2f4905534071704464881c2eb2aa27a54864ed434c4a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Zhang, Tian-Yun</creatorcontrib><creatorcontrib>Tao, Xu-Ying-Nan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Ye-Hua</creatorcontrib><creatorcontrib>Zhang, Si-Chao</creatorcontrib><creatorcontrib>Gao, Fei-Yue</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peng-Cheng</au><au>Zhang, Xiao-Long</au><au>Zhang, Tian-Yun</au><au>Tao, Xu-Ying-Nan</au><au>Yang, Yu</au><au>Wang, Ye-Hua</au><au>Zhang, Si-Chao</au><au>Gao, Fei-Yue</au><au>Niu, Zhuang-Zhuang</au><au>Fan, Ming-Hui</au><au>Gao, Min-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>146</volume><issue>29</issue><spage>20379</spage><epage>20390</epage><pages>20379-20390</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39011931</pmid><doi>10.1021/jacs.4c05983</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4831-6314</orcidid><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0002-5596-0776</orcidid><orcidid>https://orcid.org/0000-0002-3691-108X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-07, Vol.146 (29), p.20379-20390
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3081300460
source ACS Journals: American Chemical Society Web Editions
title Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-Mediated%20Promotion%20of%20Cobalt-Based%20Oxygen%20Evolution%20Catalyst%20for%20Practical%20Anion-Exchange%20Membrane%20Electrolysis&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yu,%20Peng-Cheng&rft.date=2024-07-24&rft.volume=146&rft.issue=29&rft.spage=20379&rft.epage=20390&rft.pages=20379-20390&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c05983&rft_dat=%3Cproquest_cross%3E3081300460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081300460&rft_id=info:pmid/39011931&rfr_iscdi=true