Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis
Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used fo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-07, Vol.146 (29), p.20379-20390 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20390 |
---|---|
container_issue | 29 |
container_start_page | 20379 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Yu, Peng-Cheng Zhang, Xiao-Long Zhang, Tian-Yun Tao, Xu-Ying-Nan Yang, Yu Wang, Ye-Hua Zhang, Si-Chao Gao, Fei-Yue Niu, Zhuang-Zhuang Fan, Ming-Hui Gao, Min-Rui |
description | Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen. |
doi_str_mv | 10.1021/jacs.4c05983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3081300460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081300460</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-121f5101258590aeec2f4905534071704464881c2eb2aa27a54864ed434c4a483</originalsourceid><addsrcrecordid>eNptkDtPwzAURi0EgvLYmFFGBlJ8_UidsVTlIVFggDm6dZ2SKomL7aD23-PSAguTZd3zfdc-hJwD7QNlcL1A7ftCU5krvkd6IBlNJbBsn_QopSwdqIwfkWPvF_EqmIJDcsRzCpBz6JHVUxWcnZs2nZhZhcHMkhdnGxsq2ya2TEZ2inVIb9DHyfNqHclk_Gnr7hsYYcB67UNSWhdzqEOlsU6GbRym45V-x3Zukolppg5bk4xro-O2mKj8KTkosfbmbHeekLfb8evoPn18vnsYDR9TZAAhBQalBApMKplTNEazUuRUSi7oAAZUiEwoBZqZKUNkA5RCZcLMBBdaoFD8hFxue5fOfnTGh6KpvDZ1HR9kO19wqoBHMRmN6NUW1c5670xZLF3VoFsXQIuN62Ljuti5jvjFrrmbNmb2C__I_Vu9SS1s59r40f-7vgCAR4dn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081300460</pqid></control><display><type>article</type><title>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Yu, Peng-Cheng ; Zhang, Xiao-Long ; Zhang, Tian-Yun ; Tao, Xu-Ying-Nan ; Yang, Yu ; Wang, Ye-Hua ; Zhang, Si-Chao ; Gao, Fei-Yue ; Niu, Zhuang-Zhuang ; Fan, Ming-Hui ; Gao, Min-Rui</creator><creatorcontrib>Yu, Peng-Cheng ; Zhang, Xiao-Long ; Zhang, Tian-Yun ; Tao, Xu-Ying-Nan ; Yang, Yu ; Wang, Ye-Hua ; Zhang, Si-Chao ; Gao, Fei-Yue ; Niu, Zhuang-Zhuang ; Fan, Ming-Hui ; Gao, Min-Rui</creatorcontrib><description>Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c05983</identifier><identifier>PMID: 39011931</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-07, Vol.146 (29), p.20379-20390</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-121f5101258590aeec2f4905534071704464881c2eb2aa27a54864ed434c4a483</cites><orcidid>0000-0003-4831-6314 ; 0000-0002-7805-803X ; 0000-0002-5596-0776 ; 0000-0002-3691-108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c05983$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c05983$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39011931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Zhang, Tian-Yun</creatorcontrib><creatorcontrib>Tao, Xu-Ying-Nan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Ye-Hua</creatorcontrib><creatorcontrib>Zhang, Si-Chao</creatorcontrib><creatorcontrib>Gao, Fei-Yue</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><title>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkDtPwzAURi0EgvLYmFFGBlJ8_UidsVTlIVFggDm6dZ2SKomL7aD23-PSAguTZd3zfdc-hJwD7QNlcL1A7ftCU5krvkd6IBlNJbBsn_QopSwdqIwfkWPvF_EqmIJDcsRzCpBz6JHVUxWcnZs2nZhZhcHMkhdnGxsq2ya2TEZ2inVIb9DHyfNqHclk_Gnr7hsYYcB67UNSWhdzqEOlsU6GbRym45V-x3Zukolppg5bk4xro-O2mKj8KTkosfbmbHeekLfb8evoPn18vnsYDR9TZAAhBQalBApMKplTNEazUuRUSi7oAAZUiEwoBZqZKUNkA5RCZcLMBBdaoFD8hFxue5fOfnTGh6KpvDZ1HR9kO19wqoBHMRmN6NUW1c5670xZLF3VoFsXQIuN62Ljuti5jvjFrrmbNmb2C__I_Vu9SS1s59r40f-7vgCAR4dn</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Yu, Peng-Cheng</creator><creator>Zhang, Xiao-Long</creator><creator>Zhang, Tian-Yun</creator><creator>Tao, Xu-Ying-Nan</creator><creator>Yang, Yu</creator><creator>Wang, Ye-Hua</creator><creator>Zhang, Si-Chao</creator><creator>Gao, Fei-Yue</creator><creator>Niu, Zhuang-Zhuang</creator><creator>Fan, Ming-Hui</creator><creator>Gao, Min-Rui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4831-6314</orcidid><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0002-5596-0776</orcidid><orcidid>https://orcid.org/0000-0002-3691-108X</orcidid></search><sort><creationdate>20240724</creationdate><title>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</title><author>Yu, Peng-Cheng ; Zhang, Xiao-Long ; Zhang, Tian-Yun ; Tao, Xu-Ying-Nan ; Yang, Yu ; Wang, Ye-Hua ; Zhang, Si-Chao ; Gao, Fei-Yue ; Niu, Zhuang-Zhuang ; Fan, Ming-Hui ; Gao, Min-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-121f5101258590aeec2f4905534071704464881c2eb2aa27a54864ed434c4a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peng-Cheng</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Zhang, Tian-Yun</creatorcontrib><creatorcontrib>Tao, Xu-Ying-Nan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Ye-Hua</creatorcontrib><creatorcontrib>Zhang, Si-Chao</creatorcontrib><creatorcontrib>Gao, Fei-Yue</creatorcontrib><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Fan, Ming-Hui</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peng-Cheng</au><au>Zhang, Xiao-Long</au><au>Zhang, Tian-Yun</au><au>Tao, Xu-Ying-Nan</au><au>Yang, Yu</au><au>Wang, Ye-Hua</au><au>Zhang, Si-Chao</au><au>Gao, Fei-Yue</au><au>Niu, Zhuang-Zhuang</au><au>Fan, Ming-Hui</au><au>Gao, Min-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>146</volume><issue>29</issue><spage>20379</spage><epage>20390</epage><pages>20379-20390</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39011931</pmid><doi>10.1021/jacs.4c05983</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4831-6314</orcidid><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0002-5596-0776</orcidid><orcidid>https://orcid.org/0000-0002-3691-108X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-07, Vol.146 (29), p.20379-20390 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3081300460 |
source | ACS Journals: American Chemical Society Web Editions |
title | Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-Mediated%20Promotion%20of%20Cobalt-Based%20Oxygen%20Evolution%20Catalyst%20for%20Practical%20Anion-Exchange%20Membrane%20Electrolysis&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yu,%20Peng-Cheng&rft.date=2024-07-24&rft.volume=146&rft.issue=29&rft.spage=20379&rft.epage=20390&rft.pages=20379-20390&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c05983&rft_dat=%3Cproquest_cross%3E3081300460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081300460&rft_id=info:pmid/39011931&rfr_iscdi=true |