Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis

Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-07, Vol.146 (29), p.20379-20390
Hauptverfasser: Yu, Peng-Cheng, Zhang, Xiao-Long, Zhang, Tian-Yun, Tao, Xu-Ying-Nan, Yang, Yu, Wang, Ye-Hua, Zhang, Si-Chao, Gao, Fei-Yue, Niu, Zhuang-Zhuang, Fan, Ming-Hui, Gao, Min-Rui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm–2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm–2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c05983