A 3D printable near-infrared triggered hydrogel with MoS2 as the crosslink center for tissue repair
Near-infrared (NIR) light, compared with ultraviolet (UV) light, has a stronger tissue penetration ability and is widely used in the medical field. However, few hydrogels can be triggered by NIR. Here, a modular polymer-nanosheet (metal disulfide) (PNS) hydrogel system was proposed, which can be pho...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-08, Vol.12 (32), p.7879-7891 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Near-infrared (NIR) light, compared with ultraviolet (UV) light, has a stronger tissue penetration ability and is widely used in the medical field. However, few hydrogels can be triggered by NIR. Here, a modular polymer-nanosheet (metal disulfide) (PNS) hydrogel system was proposed, which can be photo-crosslinked through photothermal conversion under NIR light. MoS2, a transition-metal dichalcogenide, was used as a crosslink center in PNS hydrogels. Mo and S (from thiolated polymers), which are essential for gelation, were discovered to have new bonds. Furthermore, 3D printing of NIR-triggered PNS hydrogels was achieved conceptually with masked NIR. Moreover, multiple hydrogels and metal disulfides were applicable in this modular gelation system. This study indicated that these PNS hydrogels have great potential in many smart biomedical applications, including wearable sensors, noninvasive in vivo 3D bioprinting, and tissue repair substitutes. |
---|---|
ISSN: | 2050-750X 2050-7518 2050-7518 |
DOI: | 10.1039/d4tb00759j |