Active Discovery of the Allosteric Inhibitor Targeting Botrytis cinerea Chitinase Based on Neural Relational Inference for Food Preservation

Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-07, Vol.72 (29), p.16128-16139
Hauptverfasser: Wang, Hongsu, Wang, Chenyang, Wang, Ziyou, Niu, Xiaodi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 μg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.4c03023