Optimization Design and Performance Study of Wearable Thermoelectric Device Using Phase Change Material as Heat Sink

Wearable thermoelectric generators have great potential to provide power for smart electronic wearable devices and miniature sensors by harnessing the temperature difference between the human body and the environment. However, the Thomson effect, the Joule effect, and heat conduction can cause a dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-07, Vol.17 (13), p.3266
Hauptverfasser: Xin, Jiakai, Xu, Guiying, Guo, Tao, Nan, Bohang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable thermoelectric generators have great potential to provide power for smart electronic wearable devices and miniature sensors by harnessing the temperature difference between the human body and the environment. However, the Thomson effect, the Joule effect, and heat conduction can cause a decrease in the temperature difference across the thermoelectric generator during operation. In this paper, phase change materials (PCMs) were employed as the heat sink for the thermoelectric generator, and the COMSOL software 6.1 was utilized to simulate and optimize the power generation processes within the heat sink. The results indicated that with a PCM height of 40 mm, phase transition temperature of 293 K, latent heat of 200 kJ/kg, phase transition temperature interval of 5 K, thermal conductivity of 50 W/(m·K), isobaric heat capacity of 2000 J/(Kg·K), density of 1000 kg/m , and convective heat transfer coefficient of 10 W/(m·K), the device can maintain a temperature difference of 18-10 K for 1930 s when the thermoelectric leg height is 1.6 mm, and 3760 s when the thermoelectric leg height is 2.7 mm. These results demonstrate the correlation between the device's output performance and the dimensions and performance parameters of the PCM heat sink, thereby validating the feasibility of employing the PCM heat sink and the necessity for systematic investigations.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17133266