Pantothenate-encapsulated liposomes combined with exercise for effective inhibition of CRM1-mediated PKM2 translocation in Alzheimer's therapy
Alzheimer's disease (AD) is a complex neurodegenerative condition characterized by metabolic imbalances and neuroinflammation, posing a formidable challenge in medicine due to the lack of effective treatments. Despite considerable research efforts, a cure for AD remains elusive, with current th...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2024-09, Vol.373, p.336-357 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer's disease (AD) is a complex neurodegenerative condition characterized by metabolic imbalances and neuroinflammation, posing a formidable challenge in medicine due to the lack of effective treatments. Despite considerable research efforts, a cure for AD remains elusive, with current therapies primarily focused on symptom management rather than addressing the disease's underlying causes. This study initially discerned, through Mendelian randomization analysis that elevating pantothenate levels significantly contributes to the prophylaxis of Alzheimer's disease. We explore the therapeutic potential of pantothenate encapsulated in liposomes (Pan@TRF@Liposome NPs), targeting the modulation of CRM1-mediated PKM2 nuclear translocation, a critical mechanism in AD pathology. Additionally, we investigate the synergistic effects of exercise, proposing a combined approach to AD treatment. Exercise-induced metabolic alterations share significant similarities with those associated with dementia, suggesting a potential complementary effect. The Pan@TRF@Liposome NPs exhibit notable biocompatibility, showing no liver or kidney toxicity in vivo, while demonstrating stability and effectiveness in modulating CRM1-mediated PKM2 nuclear translocation, thereby reducing neuroinflammation and neuronal apoptosis. The combined treatment of exercise and Pan@TRF@Liposome NP administration in an AD animal model leads to improved neurofunctional outcomes and cognitive performance. These findings highlight the nanoparticles' role as effective modulators of CRM1-mediated PKM2 nuclear translocation, with significant implications for mitigating neuroinflammation and neuronal apoptosis. Together with exercise, this dual-modality approach could offer new avenues for enhancing cognitive performance and neurofunctional outcomes in AD, marking a promising step forward in developing treatment strategies for this challenging disorder.
The administration of Pan@TRF@Liposome nanoparticles (NPs) combined with physical exercise results in a significant reduction in neuroinflammation and neuronal apoptosis, improved neurofunctional outcomes, and enhanced cognitive performance in an Alzheimer's disease (AD) animal model. This treatment also demonstrates notable biocompatibility, stability, and effectiveness in modulating CRM1-mediated PKM2 nuclear translocation. The graphical abstract illustrates the therapeutic potential of Pan@TRF@Liposome NPs and exercise in improving AD outcomes. The injec |
---|---|
ISSN: | 0168-3659 1873-4995 1873-4995 |
DOI: | 10.1016/j.jconrel.2024.07.010 |