Gut microbiota-melatonin signaling axis in acute pancreatitis: Revealing the impact of gut health on pancreatic inflammation and disease severity in a case-control study

Acute pancreatitis (AP), a severe inflammatory condition affecting the pancreas requires investigation into its predictors. Melatonin, a compound with anti-inflammatory and antioxidant properties, has shown promise in managing AP. Additionally, the gut microbiota, a community of microorganisms resid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2024-07, Vol.103 (28), p.e38689
Hauptverfasser: Li, Chao, Wen, Yangfen, Tong, Qiwen, Peng, Yi, Yu, Dan, Rao, Yisong, Zeng, Yuehong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute pancreatitis (AP), a severe inflammatory condition affecting the pancreas requires investigation into its predictors. Melatonin, a compound with anti-inflammatory and antioxidant properties, has shown promise in managing AP. Additionally, the gut microbiota, a community of microorganisms residing in the intestines has been linked to AP development. This study aims to explore the correlation between melatonin and gut microbiota in predicting AP severity. This study involved 199 participants, with 99 diagnosed with AP and 100 serving as healthy controls. The AP patients were categorized into 2 groups based on the severity of their condition: mild AP (MAP) and severe AP (SAP). Serum melatonin levels were measured on Days 1, 3, and 5 of hospitalization, and gut microbiota composition was examined via 16S rRNA gene sequencing. Other parameters were evaluated, such as the Acute Physiology and Chronic Health Evaluation (APACHE) score, Ranson, and Acute Gastrointestinal Injury (AGI) scores. Melatonin levels were significantly lower in subjects with severe AP compared those with mild AP (18.2 ng/mL vs 32.2 ng/mL, P = .001), and melatonin levels decreased significantly in patients with AP on Days 3 and 5. The study also revealed that individuals with AP exhibited a significantly altered gut microbiota composition compared to control individuals, with a lower Shannon index and higher Simpson index. The AUCs for Simpson index and F/B ratio were significantly higher than those for other biomarkers, indicating that these gut microbiota markers may also be useful for AP prediction. The study proposes that there is a relationship between melatonin levels and the dynamics of gut microbiota profiles in relation to the severity of AP. As a result, the severity of the disease can be assessed by assessing the levels of serum melatonin and gut microbiota profiles.
ISSN:0025-7974
1536-5964
1536-5964
DOI:10.1097/MD.0000000000038689