In Situ Construction of Specific SEI Layer Affords Effective Prelithiation

Silicon-based anodes have been attracting attention due to their high theoretical specific capacity, but their low initial Coulombic efficiency (ICE) seriously hinders their commercial application. Direct contact prelithiation is considered to be one of the effective means of solving this problem. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (29), p.38188-38197
Hauptverfasser: Zhang, Kaifa, Wang, Huiping, Feng, Zishuo, Yan, Baijun, Xia, Baojia, Li, Jianling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon-based anodes have been attracting attention due to their high theoretical specific capacity, but their low initial Coulombic efficiency (ICE) seriously hinders their commercial application. Direct contact prelithiation is considered to be one of the effective means of solving this problem. By means of prelithiation, a specific solid electrolyte interphase (SEI) was constructed, which inhibited the volume expansion of the SiO/C composite anode during prelithiation and reduced the local current generated when the lithium source was in contact with the anode. On the one hand, it can reduce the side reactions derived from the decomposition of electrolytes in the prelithiation process, and on the other hand, it can slow down the prelithiation process and inhibit the volume expansion of the SiO/C composite anode in the prelithiation process. The results of XPS, TOF-SIMS, and other tests show that the use of an electrolyte whose main component is LiTFSI can construct SEI film whose main component is LiF, which to a certain extent can slow down the rate of prelithiation, reduce the local current generated when the lithium source is in contact with the negative electrode, minimize the occurrence of side reactions, and inhibit the volume expansion of the negative electrode material. The full battery assembled with NCM111 positive electrode still exhibits 83.5% capacity retention after 500 cycles at 1 C current density. These studies provide some ideas to enhance the performance of silicon-based materials.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c07895