Implementation of Nonadiabatic Molecular Dynamics for Intersystem Crossing Based on a Time-Dependent Density-Functional Tight-Binding Method
Intersystem crossing (ISC) and internal conversion (IC) are types of nonadiabatic transitions that play important roles in a wide range of fields, including photochemistry, photophysics, and photobiology. The nonadiabatic molecular dynamics (NA-MD) method is a powerful tool for computational simulat...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-07, Vol.128 (29), p.5999-6009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intersystem crossing (ISC) and internal conversion (IC) are types of nonadiabatic transitions that play important roles in a wide range of fields, including photochemistry, photophysics, and photobiology. The nonadiabatic molecular dynamics (NA-MD) method is a powerful tool for computational simulations of dynamic phenomena involving nonadiabatic transitions. In this study, we implemented the NA-MD method, which treats ISC and IC on an equal footing, where the electronic structure is treated at the level of the time-dependent (TD) density-functional tight-binding (DFTB) method, a low-cost semiempirical analog of TD density functional theory (DFT). In particular, the spin–orbit coupling calculation algorithm was implemented in the TD-DFTB framework, and the results showed trends similar to those obtained using TD-DFT. In addition, the NA-MD method successfully reproduced ultrafast ISC of 2-nitronaphthalene. |
---|---|
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/acs.jpca.4c02422 |