Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification
The non-stationarity of EEG signals results in variability across sessions, impeding model building and data sharing. In this paper, we propose a domain adaptation method called GPL, which simultaneously considers global knowledge and prototype-based local class information to enhance the classifica...
Gespeichert in:
Veröffentlicht in: | Neural networks 2024-11, Vol.179, p.106497, Article 106497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!