Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification

The non-stationarity of EEG signals results in variability across sessions, impeding model building and data sharing. In this paper, we propose a domain adaptation method called GPL, which simultaneously considers global knowledge and prototype-based local class information to enhance the classifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-11, Vol.179, p.106497, Article 106497
Hauptverfasser: Zhang, Dongxue, Li, Huiying, Xie, Jingmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non-stationarity of EEG signals results in variability across sessions, impeding model building and data sharing. In this paper, we propose a domain adaptation method called GPL, which simultaneously considers global knowledge and prototype-based local class information to enhance the classification accuracy of motor imagery signals. Depending on the amount of labeled data available in the target domain, the method is implemented in both unsupervised and semi-supervised versions. Specifically, at the global level, we employ the maximum mean difference (MMD) loss to globally constrain the feature space, achieving comprehensive alignment. In the context of class-level operations, we propose two memory banks designed to accommodate class prototypes in each domain and constrain feature embeddings by applying two prototype-based contrastive losses. The source contrastive loss is used to organize source features spatially based on categories, thereby reconciling inter-class and intra-class relationships, while the interactive contrastive loss is employed to facilitate cross-domain information interaction. Simultaneously, in unsupervised scenarios, to mitigate the adverse effects of excessive pseudo-labels, we introduce an entropy-aware strategy that dynamically evaluates the confidence level of target data and personalized constraints on the participation of interactive contrastive loss. To validate our approach, extensive experiments were conducted on a highly regarded public EEG dataset, namely Dataset IIa of the BCI Competition IV, as well as a large-scale EEG dataset called GigaDB. The experiments yielded average classification accuracies of 86.03% and 84.22% respectively. These results demonstrate that our method is an effective EEG decoding model, conducive to advancing the development of motor imagery brain–computer interfaces. The architecture proposed in this study and the code for data partitioning can be found at https://github.com/zhangdx21/GPL.
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2024.106497