Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance
High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based n...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-07, Vol.18 (29), p.19024-19037 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19037 |
---|---|
container_issue | 29 |
container_start_page | 19024 |
container_title | ACS nano |
container_volume | 18 |
creator | Phan-Xuan, Thuong Schweidler, Simon Hirte, Steffen Schüller, Moritz Lin, Ling Khandelwal, Anurag Wang, Kai Schützke, Jan Reischl, Markus Kübel, Christian Hahn, Horst Bello, Gianluca Kirchmair, Johannes Aghassi-Hagmann, Jasmin Brezesinski, Torsten Breitung, Ben Dailey, Lea Ann |
description | High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA‘)(BB’B‘‘)2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes. |
doi_str_mv | 10.1021/acsnano.4c03053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3078715340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078715340</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-467e7e29bdfcc910da9f6a98fa40ab88f84bf4e7043d525f8b267042426c8c223</originalsourceid><addsrcrecordid>eNp1kctqHDEQRYWJiR_J2rugZSBuW49-qLMbjB0PTDyBiSG7ploteWS6pbGkDm6v8g_JF-ZLIjMT77yqKjh1i1sXoRNKzihh9BxksGDdWS4JJwXfQ4e05mVGRPnjzUtf0AN0FMI9IUUlqvItOuCiFkXFy0P05zYYe4fjWuFrc7fOLm30bjPh2WbjHcg1jg4v2wjG4q9jH82gIvR4-Wg6hW_S5adpUOEzXpjWg5_warJJKphwiucWr0xvpMOr6EcZR6_-_vo9k9H8NHE6xWA7PB-G0ToIASb8TXnt_ABWqndoX0Mf1PtdPUa3V5ffL66zxfLL_GK2yIDRKmZ5WalKsbrttJQ1JR3UuoRaaMgJtEJokbc6VxXJeVewQouWlWlgOSulkIzxY_Rxq5u8PowqxGYwQaq-B6vcGBpO0r9owXOS0PMtKr0LwSvdbLwZkuWGkuY5imYXRbOLIm182ImP7aC6F_7_7xPwaQukzebejd4mr6_K_QNqSphn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078715340</pqid></control><display><type>article</type><title>Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Phan-Xuan, Thuong ; Schweidler, Simon ; Hirte, Steffen ; Schüller, Moritz ; Lin, Ling ; Khandelwal, Anurag ; Wang, Kai ; Schützke, Jan ; Reischl, Markus ; Kübel, Christian ; Hahn, Horst ; Bello, Gianluca ; Kirchmair, Johannes ; Aghassi-Hagmann, Jasmin ; Brezesinski, Torsten ; Breitung, Ben ; Dailey, Lea Ann</creator><creatorcontrib>Phan-Xuan, Thuong ; Schweidler, Simon ; Hirte, Steffen ; Schüller, Moritz ; Lin, Ling ; Khandelwal, Anurag ; Wang, Kai ; Schützke, Jan ; Reischl, Markus ; Kübel, Christian ; Hahn, Horst ; Bello, Gianluca ; Kirchmair, Johannes ; Aghassi-Hagmann, Jasmin ; Brezesinski, Torsten ; Breitung, Ben ; Dailey, Lea Ann</creatorcontrib><description>High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA‘)(BB’B‘‘)2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c03053</identifier><identifier>PMID: 38985736</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Computer Simulation ; Entropy ; Hydrogen Peroxide - chemistry ; Immunoassay - methods ; Nanostructures - chemistry ; Oxides - chemistry ; Structure-Activity Relationship</subject><ispartof>ACS nano, 2024-07, Vol.18 (29), p.19024-19037</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-467e7e29bdfcc910da9f6a98fa40ab88f84bf4e7043d525f8b267042426c8c223</cites><orcidid>0000-0001-5816-4866 ; 0000-0003-4654-8699 ; 0000-0001-5701-4006 ; 0000-0002-1304-3398 ; 0000-0003-2667-5877 ; 0000-0002-4336-263X ; 0000-0003-0348-041X ; 0000-0002-4908-7122 ; 0000-0003-4675-1072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c03053$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c03053$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38985736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phan-Xuan, Thuong</creatorcontrib><creatorcontrib>Schweidler, Simon</creatorcontrib><creatorcontrib>Hirte, Steffen</creatorcontrib><creatorcontrib>Schüller, Moritz</creatorcontrib><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Khandelwal, Anurag</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Schützke, Jan</creatorcontrib><creatorcontrib>Reischl, Markus</creatorcontrib><creatorcontrib>Kübel, Christian</creatorcontrib><creatorcontrib>Hahn, Horst</creatorcontrib><creatorcontrib>Bello, Gianluca</creatorcontrib><creatorcontrib>Kirchmair, Johannes</creatorcontrib><creatorcontrib>Aghassi-Hagmann, Jasmin</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><creatorcontrib>Breitung, Ben</creatorcontrib><creatorcontrib>Dailey, Lea Ann</creatorcontrib><title>Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA‘)(BB’B‘‘)2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes.</description><subject>Catalysis</subject><subject>Computer Simulation</subject><subject>Entropy</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Immunoassay - methods</subject><subject>Nanostructures - chemistry</subject><subject>Oxides - chemistry</subject><subject>Structure-Activity Relationship</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctqHDEQRYWJiR_J2rugZSBuW49-qLMbjB0PTDyBiSG7ploteWS6pbGkDm6v8g_JF-ZLIjMT77yqKjh1i1sXoRNKzihh9BxksGDdWS4JJwXfQ4e05mVGRPnjzUtf0AN0FMI9IUUlqvItOuCiFkXFy0P05zYYe4fjWuFrc7fOLm30bjPh2WbjHcg1jg4v2wjG4q9jH82gIvR4-Wg6hW_S5adpUOEzXpjWg5_warJJKphwiucWr0xvpMOr6EcZR6_-_vo9k9H8NHE6xWA7PB-G0ToIASb8TXnt_ABWqndoX0Mf1PtdPUa3V5ffL66zxfLL_GK2yIDRKmZ5WalKsbrttJQ1JR3UuoRaaMgJtEJokbc6VxXJeVewQouWlWlgOSulkIzxY_Rxq5u8PowqxGYwQaq-B6vcGBpO0r9owXOS0PMtKr0LwSvdbLwZkuWGkuY5imYXRbOLIm182ImP7aC6F_7_7xPwaQukzebejd4mr6_K_QNqSphn</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Phan-Xuan, Thuong</creator><creator>Schweidler, Simon</creator><creator>Hirte, Steffen</creator><creator>Schüller, Moritz</creator><creator>Lin, Ling</creator><creator>Khandelwal, Anurag</creator><creator>Wang, Kai</creator><creator>Schützke, Jan</creator><creator>Reischl, Markus</creator><creator>Kübel, Christian</creator><creator>Hahn, Horst</creator><creator>Bello, Gianluca</creator><creator>Kirchmair, Johannes</creator><creator>Aghassi-Hagmann, Jasmin</creator><creator>Brezesinski, Torsten</creator><creator>Breitung, Ben</creator><creator>Dailey, Lea Ann</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5816-4866</orcidid><orcidid>https://orcid.org/0000-0003-4654-8699</orcidid><orcidid>https://orcid.org/0000-0001-5701-4006</orcidid><orcidid>https://orcid.org/0000-0002-1304-3398</orcidid><orcidid>https://orcid.org/0000-0003-2667-5877</orcidid><orcidid>https://orcid.org/0000-0002-4336-263X</orcidid><orcidid>https://orcid.org/0000-0003-0348-041X</orcidid><orcidid>https://orcid.org/0000-0002-4908-7122</orcidid><orcidid>https://orcid.org/0000-0003-4675-1072</orcidid></search><sort><creationdate>20240723</creationdate><title>Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance</title><author>Phan-Xuan, Thuong ; Schweidler, Simon ; Hirte, Steffen ; Schüller, Moritz ; Lin, Ling ; Khandelwal, Anurag ; Wang, Kai ; Schützke, Jan ; Reischl, Markus ; Kübel, Christian ; Hahn, Horst ; Bello, Gianluca ; Kirchmair, Johannes ; Aghassi-Hagmann, Jasmin ; Brezesinski, Torsten ; Breitung, Ben ; Dailey, Lea Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-467e7e29bdfcc910da9f6a98fa40ab88f84bf4e7043d525f8b267042426c8c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Computer Simulation</topic><topic>Entropy</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Immunoassay - methods</topic><topic>Nanostructures - chemistry</topic><topic>Oxides - chemistry</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan-Xuan, Thuong</creatorcontrib><creatorcontrib>Schweidler, Simon</creatorcontrib><creatorcontrib>Hirte, Steffen</creatorcontrib><creatorcontrib>Schüller, Moritz</creatorcontrib><creatorcontrib>Lin, Ling</creatorcontrib><creatorcontrib>Khandelwal, Anurag</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Schützke, Jan</creatorcontrib><creatorcontrib>Reischl, Markus</creatorcontrib><creatorcontrib>Kübel, Christian</creatorcontrib><creatorcontrib>Hahn, Horst</creatorcontrib><creatorcontrib>Bello, Gianluca</creatorcontrib><creatorcontrib>Kirchmair, Johannes</creatorcontrib><creatorcontrib>Aghassi-Hagmann, Jasmin</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><creatorcontrib>Breitung, Ben</creatorcontrib><creatorcontrib>Dailey, Lea Ann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan-Xuan, Thuong</au><au>Schweidler, Simon</au><au>Hirte, Steffen</au><au>Schüller, Moritz</au><au>Lin, Ling</au><au>Khandelwal, Anurag</au><au>Wang, Kai</au><au>Schützke, Jan</au><au>Reischl, Markus</au><au>Kübel, Christian</au><au>Hahn, Horst</au><au>Bello, Gianluca</au><au>Kirchmair, Johannes</au><au>Aghassi-Hagmann, Jasmin</au><au>Brezesinski, Torsten</au><au>Breitung, Ben</au><au>Dailey, Lea Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-23</date><risdate>2024</risdate><volume>18</volume><issue>29</issue><spage>19024</spage><epage>19037</epage><pages>19024-19037</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA‘)(BB’B‘‘)2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38985736</pmid><doi>10.1021/acsnano.4c03053</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5816-4866</orcidid><orcidid>https://orcid.org/0000-0003-4654-8699</orcidid><orcidid>https://orcid.org/0000-0001-5701-4006</orcidid><orcidid>https://orcid.org/0000-0002-1304-3398</orcidid><orcidid>https://orcid.org/0000-0003-2667-5877</orcidid><orcidid>https://orcid.org/0000-0002-4336-263X</orcidid><orcidid>https://orcid.org/0000-0003-0348-041X</orcidid><orcidid>https://orcid.org/0000-0002-4908-7122</orcidid><orcidid>https://orcid.org/0000-0003-4675-1072</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-07, Vol.18 (29), p.19024-19037 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3078715340 |
source | MEDLINE; American Chemical Society Journals |
subjects | Catalysis Computer Simulation Entropy Hydrogen Peroxide - chemistry Immunoassay - methods Nanostructures - chemistry Oxides - chemistry Structure-Activity Relationship |
title | Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20High-Entropy%20Approach%20to%20Obtain%20Multimetal%20Oxide%20Nanozymes:%20Library%20Synthesis,%20In%20Silico%20Structure%E2%80%93Activity,%20and%20Immunoassay%20Performance&rft.jtitle=ACS%20nano&rft.au=Phan-Xuan,%20Thuong&rft.date=2024-07-23&rft.volume=18&rft.issue=29&rft.spage=19024&rft.epage=19037&rft.pages=19024-19037&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c03053&rft_dat=%3Cproquest_cross%3E3078715340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078715340&rft_id=info:pmid/38985736&rfr_iscdi=true |