Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance
High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based n...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-07, Vol.18 (29), p.19024-19037 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA‘)(BB’B‘‘)2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes. |
---|---|
ISSN: | 1936-0851 1936-086X 1936-086X |
DOI: | 10.1021/acsnano.4c03053 |