Cu2(OH)3NO3/γ-Al2O3 catalyzes Fenton-like oxidation for the advanced treatment of effluent organic matter (EfOM) in fermentation pharmaceutical wastewater: The synergy of Cu2(OH)3NO3 and γ-Al2O3

•Cu2(OH)3NO3/γ-Al2O3 is first prepared by ultrasonic impregnation and calcination.•Cu2(OH)3NO3/γ-Al2O3H2O2 is efficient in oxidizing EfOM (96.90 %) in high-Cl− sewage.••OOH and 1O2 are predominant reactive oxygen species in the catalytic system.•Carrier γ-Al2O3 enhances the catalytic selectivity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2024-09, Vol.261, p.122049, Article 122049
Hauptverfasser: Wang, Xuhui, Li, Weiguang, Zhang, Jingyi, Zhao, Qi, Zhang, Guanglin, Bai, Caihua, Lv, Longyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Cu2(OH)3NO3/γ-Al2O3 is first prepared by ultrasonic impregnation and calcination.•Cu2(OH)3NO3/γ-Al2O3H2O2 is efficient in oxidizing EfOM (96.90 %) in high-Cl− sewage.••OOH and 1O2 are predominant reactive oxygen species in the catalytic system.•Carrier γ-Al2O3 enhances the catalytic selectivity of Cu2(OH)3NO3 in activating H2O2. The secondary effluent of fermentation pharmaceutical wastewater exhibits high chromaticity, elevated salinity, and abundant refractory effluent organic matter (EfOM), presenting significant treatment challenges and environmental threats. Herein, Cu2(OH)3NO3/γ-Al2O3 was fabricated through ultrasound-assisted impregnation and calcination to catalyze the Fenton-like oxidation for degrading organic pollutants in this secondary effluent. Under neutral conditions, with 400.00 mg/L H2O2, 8 g/L catalyst, and at 30 ℃, the EfOM and CODCr removal efficiencies can reach 96.90 % and 51.56 %, respectively. The Cu2(OH)3NO3/γ-Al2O3 catalyst possesses ideal reusability, maintaining CODCr, chromaticity, and EfOM removal efficiencies at 44.44 %-64.59 %, 85.45 %-93.45 %, and 61.00 %-95.00 % over 220 h in a continuous-flow catalytic oxidation system operated at room temperatures (15–25 ℃). Electron paramagnetic resonance results and density functional theory calculations indicate that •OOH may be the predominant reactive oxygen species, facilitated by the easier elongation of the OH bond in H2O2 compared to the OO bond. The adjusted electronic structure endows Cu2(OH)3NO3/γ-Al2O3 composite sites with superior catalytic selectivity for H2O2 activation compared to Cu2(OH)3NO3 single crystal sites, with γ-Al2O3 additionally facilitating H2O2 activation through electron donation. This research highlights the efficacy of Cu2(OH)3NO3/γ-Al2O3 in the advanced treatment of complex industrial wastewater, elucidating its catalytic mechanisms and potential applications. [Display omitted]
ISSN:0043-1354
1879-2448
1879-2448
DOI:10.1016/j.watres.2024.122049