Catalyst Editing via Post-Synthetic Functionalization by Phosphonium Generation and Anion Exchange for Nickel-Catalyzed Ethylene/Acrylate Copolymerization

Rapid, efficient development of homogeneous catalysts featuring desired performance is critical to numerous catalytic transformations but remains a key challenge. Typically, this task relies heavily on ligand design that is often based on trial and error. Herein, we demonstrate a “catalyst editing”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-07, Vol.146 (28), p.18797-18803
Hauptverfasser: Ghana, Priyabrata, Xiong, Shuoyan, Tekpor, Adjeoda, Bailey, Brad C., Spinney, Heather A., Henderson, Briana S., Agapie, Theodor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid, efficient development of homogeneous catalysts featuring desired performance is critical to numerous catalytic transformations but remains a key challenge. Typically, this task relies heavily on ligand design that is often based on trial and error. Herein, we demonstrate a “catalyst editing” strategy in Ni-catalyzed ethylene/acrylate copolymerization. Specifically, alkylation of a pendant phosphine followed by anion exchange provides a high yield strategy for a large number of cationic Ni phosphonium catalysts with varying electronic and steric profiles. These catalysts are highly active in ethylene/acrylate copolymerization, and their behaviors are correlated with the electrophile and the anion used in late-stage functionalization.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c03416