Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction

Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (28), p.36247-36254
Hauptverfasser: Guo, Chengqi, Jiang, Enhui, Chen, Qiuli, Li, Wanhe, Chen, Yahui, Jia, Shuhan, Zhou, Yiying, Liu, Zhonghuan, Lin, Xinyu, Huo, Pengwei, Li, Chunxiang, Ng, Yun Hau, Crittenden, John Charles, Zhu, Zhi, Yan, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36254
container_issue 28
container_start_page 36247
container_title ACS applied materials & interfaces
container_volume 16
creator Guo, Chengqi
Jiang, Enhui
Chen, Qiuli
Li, Wanhe
Chen, Yahui
Jia, Shuhan
Zhou, Yiying
Liu, Zhonghuan
Lin, Xinyu
Huo, Pengwei
Li, Chunxiang
Ng, Yun Hau
Crittenden, John Charles
Zhu, Zhi
Yan, Yan
description Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C–C x ) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C–C0.5 catalyst achieves CO2 reduction reaction rates of 12000–15000 μmol·g–1·h–1 to CO and 1000–3200 μmol·g–1·h–1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.
doi_str_mv 10.1021/acsami.4c03790
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076018094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076018094</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-e7a4de18de09ab9f844f1c823ba06158bec5c9279f9b5e67770703f07ca13f913</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKevPudRhM5LkzbNo5TphMFE53NI08vW0SXatIr_vdUN4eAO7rsfx0fINYMZg5TdGRvNvpkJC1wqOCETpoRIijRLT_9nIc7JRYw7gJynkE2Ift6GPiRjrbfY7U1Ly-A_sYtN8HRhOo8xNn5Dl-ErmXvsNt_078JH-oK-HkE6d66xDfqevobWdLRcpeOuHmw_ZlySM2faiFfHPiVvD_N1uUiWq8en8n6ZGJbxPkFpRI2sqBGUqZQrhHDMFimvDOQsKyq0mVWpVE5VGeZSSpDAHUhrGHeK8Sm5OeS-d-FjwNjrfRMttq3xGIaoOcgcWAFKjOjtAR2F6V0YOj8-phnoX4v6YFEfLfIfwclmxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076018094</pqid></control><display><type>article</type><title>Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction</title><source>ACS Publications</source><creator>Guo, Chengqi ; Jiang, Enhui ; Chen, Qiuli ; Li, Wanhe ; Chen, Yahui ; Jia, Shuhan ; Zhou, Yiying ; Liu, Zhonghuan ; Lin, Xinyu ; Huo, Pengwei ; Li, Chunxiang ; Ng, Yun Hau ; Crittenden, John Charles ; Zhu, Zhi ; Yan, Yan</creator><creatorcontrib>Guo, Chengqi ; Jiang, Enhui ; Chen, Qiuli ; Li, Wanhe ; Chen, Yahui ; Jia, Shuhan ; Zhou, Yiying ; Liu, Zhonghuan ; Lin, Xinyu ; Huo, Pengwei ; Li, Chunxiang ; Ng, Yun Hau ; Crittenden, John Charles ; Zhu, Zhi ; Yan, Yan</creatorcontrib><description>Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C–C x ) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C–C0.5 catalyst achieves CO2 reduction reaction rates of 12000–15000 μmol·g–1·h–1 to CO and 1000–3200 μmol·g–1·h–1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c03790</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (28), p.36247-36254</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9142-2126 ; 0000-0002-9048-7208 ; 0000-0001-9899-0820 ; 0000-0001-7481-8532 ; 0000-0003-2393-3017 ; 0000-0003-3775-4167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c03790$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c03790$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Guo, Chengqi</creatorcontrib><creatorcontrib>Jiang, Enhui</creatorcontrib><creatorcontrib>Chen, Qiuli</creatorcontrib><creatorcontrib>Li, Wanhe</creatorcontrib><creatorcontrib>Chen, Yahui</creatorcontrib><creatorcontrib>Jia, Shuhan</creatorcontrib><creatorcontrib>Zhou, Yiying</creatorcontrib><creatorcontrib>Liu, Zhonghuan</creatorcontrib><creatorcontrib>Lin, Xinyu</creatorcontrib><creatorcontrib>Huo, Pengwei</creatorcontrib><creatorcontrib>Li, Chunxiang</creatorcontrib><creatorcontrib>Ng, Yun Hau</creatorcontrib><creatorcontrib>Crittenden, John Charles</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><title>Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C–C x ) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C–C0.5 catalyst achieves CO2 reduction reaction rates of 12000–15000 μmol·g–1·h–1 to CO and 1000–3200 μmol·g–1·h–1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKevPudRhM5LkzbNo5TphMFE53NI08vW0SXatIr_vdUN4eAO7rsfx0fINYMZg5TdGRvNvpkJC1wqOCETpoRIijRLT_9nIc7JRYw7gJynkE2Ift6GPiRjrbfY7U1Ly-A_sYtN8HRhOo8xNn5Dl-ErmXvsNt_078JH-oK-HkE6d66xDfqevobWdLRcpeOuHmw_ZlySM2faiFfHPiVvD_N1uUiWq8en8n6ZGJbxPkFpRI2sqBGUqZQrhHDMFimvDOQsKyq0mVWpVE5VGeZSSpDAHUhrGHeK8Sm5OeS-d-FjwNjrfRMttq3xGIaoOcgcWAFKjOjtAR2F6V0YOj8-phnoX4v6YFEfLfIfwclmxQ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Guo, Chengqi</creator><creator>Jiang, Enhui</creator><creator>Chen, Qiuli</creator><creator>Li, Wanhe</creator><creator>Chen, Yahui</creator><creator>Jia, Shuhan</creator><creator>Zhou, Yiying</creator><creator>Liu, Zhonghuan</creator><creator>Lin, Xinyu</creator><creator>Huo, Pengwei</creator><creator>Li, Chunxiang</creator><creator>Ng, Yun Hau</creator><creator>Crittenden, John Charles</creator><creator>Zhu, Zhi</creator><creator>Yan, Yan</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9142-2126</orcidid><orcidid>https://orcid.org/0000-0002-9048-7208</orcidid><orcidid>https://orcid.org/0000-0001-9899-0820</orcidid><orcidid>https://orcid.org/0000-0001-7481-8532</orcidid><orcidid>https://orcid.org/0000-0003-2393-3017</orcidid><orcidid>https://orcid.org/0000-0003-3775-4167</orcidid></search><sort><creationdate>20240717</creationdate><title>Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction</title><author>Guo, Chengqi ; Jiang, Enhui ; Chen, Qiuli ; Li, Wanhe ; Chen, Yahui ; Jia, Shuhan ; Zhou, Yiying ; Liu, Zhonghuan ; Lin, Xinyu ; Huo, Pengwei ; Li, Chunxiang ; Ng, Yun Hau ; Crittenden, John Charles ; Zhu, Zhi ; Yan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-e7a4de18de09ab9f844f1c823ba06158bec5c9279f9b5e67770703f07ca13f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chengqi</creatorcontrib><creatorcontrib>Jiang, Enhui</creatorcontrib><creatorcontrib>Chen, Qiuli</creatorcontrib><creatorcontrib>Li, Wanhe</creatorcontrib><creatorcontrib>Chen, Yahui</creatorcontrib><creatorcontrib>Jia, Shuhan</creatorcontrib><creatorcontrib>Zhou, Yiying</creatorcontrib><creatorcontrib>Liu, Zhonghuan</creatorcontrib><creatorcontrib>Lin, Xinyu</creatorcontrib><creatorcontrib>Huo, Pengwei</creatorcontrib><creatorcontrib>Li, Chunxiang</creatorcontrib><creatorcontrib>Ng, Yun Hau</creatorcontrib><creatorcontrib>Crittenden, John Charles</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chengqi</au><au>Jiang, Enhui</au><au>Chen, Qiuli</au><au>Li, Wanhe</au><au>Chen, Yahui</au><au>Jia, Shuhan</au><au>Zhou, Yiying</au><au>Liu, Zhonghuan</au><au>Lin, Xinyu</au><au>Huo, Pengwei</au><au>Li, Chunxiang</au><au>Ng, Yun Hau</au><au>Crittenden, John Charles</au><au>Zhu, Zhi</au><au>Yan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>16</volume><issue>28</issue><spage>36247</spage><epage>36254</epage><pages>36247-36254</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C–C x ) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C–C0.5 catalyst achieves CO2 reduction reaction rates of 12000–15000 μmol·g–1·h–1 to CO and 1000–3200 μmol·g–1·h–1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c03790</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9142-2126</orcidid><orcidid>https://orcid.org/0000-0002-9048-7208</orcidid><orcidid>https://orcid.org/0000-0001-9899-0820</orcidid><orcidid>https://orcid.org/0000-0001-7481-8532</orcidid><orcidid>https://orcid.org/0000-0003-2393-3017</orcidid><orcidid>https://orcid.org/0000-0003-3775-4167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (28), p.36247-36254
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3076018094
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-to-Thermal%20Conversion%20Harnessing%20Low-Energy%20Photons%20Renders%20Efficient%20Solar%20CO2%20Reduction&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guo,%20Chengqi&rft.date=2024-07-17&rft.volume=16&rft.issue=28&rft.spage=36247&rft.epage=36254&rft.pages=36247-36254&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c03790&rft_dat=%3Cproquest_acs_j%3E3076018094%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076018094&rft_id=info:pmid/&rfr_iscdi=true