Photo-to-Thermal Conversion Harnessing Low-Energy Photons Renders Efficient Solar CO2 Reduction
Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (28), p.36247-36254 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating CO bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C–C x ) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C–C0.5 catalyst achieves CO2 reduction reaction rates of 12000–15000 μmol·g–1·h–1 to CO and 1000–3200 μmol·g–1·h–1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c03790 |