Radionuclide Imaging of Cardiac Amyloidosis: An Update and Future Aspects

Cardiac amyloidosis (CA) is caused by the misfolding, accumulation and aggregation of proteins into large fibrils in the extracellular compartment of the myocardium, leading to restrictive cardiomyopathy, heart failure and death. The major forms are transthyretin (ATTR) CA and light-chain (AL) CA, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in nuclear medicine 2024-09, Vol.54 (5), p.717-732
Hauptverfasser: Clerc, Olivier F., Vijayakumar, Shilpa, Dorbala, Sharmila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiac amyloidosis (CA) is caused by the misfolding, accumulation and aggregation of proteins into large fibrils in the extracellular compartment of the myocardium, leading to restrictive cardiomyopathy, heart failure and death. The major forms are transthyretin (ATTR) CA and light-chain (AL) CA, based on the respective precursor protein. Each of them requires early diagnosis for a timely treatment initiation that will improve patient outcomes. For this, radionuclide imaging is essentially used as single-photon emission computed tomography (SPECT) with bone-avid radiotracers or as positron emission tomography (PET) with amyloid-binding radiotracers. Both offer unprecedented specificity for the diagnostic of CA. SPECT has even revolutionized the diagnosis of ATTR-CA by making it non-invasive. Indeed, SPECT has now entered the standard diagnostic pathway to CA and has led to earlier diagnosis of the disease. SPECT also modified the epidemiology of ATTR-CA, highlighting that the disease is much more frequent than previously believed, and showing that ATTR-CA plays a substantial role in HFpEF and aortic stenosis, particularly among elderly patients. In parallel, amyloid-binding radiotracers for PET have accumulated a substantial amount of evidence, but are not approved for clinical use in CA yet. Further studies are needed to refine acquisition protocols and validate results in broader populations. Unlike bone-avid SPECT radiotracers, PET radiotracers have been specifically created to bind to amyloid fibrils. Thus, PET is the only imaging method that is truly specific for amyloid deposits and very sensitive to any amyloid type. Indeed, PET can not only detect ATTR-CA, but also AL-CA and rare hereditary forms. For both SPECT and PET, advances in quantitation of myocardial uptake have generated more granular and reproducible findings, paving the way for progress in earlier diagnosis, risk stratification and therapeutic response monitoring. Encouraging findings have shown that SPECT and PET are sensitive to early CA when other diagnostic methods are negative. Both radionuclide imaging techniques can predict adverse outcomes, but more evidence is needed to determine how to use them in conjunction with usual prognostic staging scores. Studies on follow-up imaging after therapy suggested that SPECT and PET can capture myocardial changes in CA, but again, more data are needed to meaningfully interpret such changes. Based on all these promising results, radionuclide
ISSN:0001-2998
1558-4623
1558-4623
DOI:10.1053/j.semnuclmed.2024.05.012