Chemical transesterification of coconut and corn oils using different metal hydroxides as catalysts to determine the chemical and physiochemical changes to the oils

BACKGROUND The transesterification of butteroil has been shown to alter its lipid chemistry and thus alter the crystallization of the fat. The reaction kinetics and resulting crystallization of the butteroil differ depending on the nature of the catalyst used. Modeling the reaction with vegetable oi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2024-11, Vol.104 (14), p.8801-8812
Hauptverfasser: Ginsburg, Shoshana Rivka, Katz, Talia, Jiménez‐Flores, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND The transesterification of butteroil has been shown to alter its lipid chemistry and thus alter the crystallization of the fat. The reaction kinetics and resulting crystallization of the butteroil differ depending on the nature of the catalyst used. Modeling the reaction with vegetable oils is a simpler method for the analysis of resulting products to understand the chemical and physiochemical changes that occur based on catalyst selection. The objective of this work is to perform a chemical transesterification of coconut and corn oil using monovalent and divalent catalysts to investigate the chemical and crystal changes that occur. RESULTS Coconut and corn oil were subjected to chemical transesterification using both Ca(OH)2 and KOH as catalysts. In both the coconut and corn oil samples, transesterification caused monoglycerides (MAGs) and diacylglycerides (DAGs) to form from the most abundant fatty acid found in each sample. Coconut oil's melting temperature, solid fat content (SFC), and storage modulus decreased as a result of the transesterification, and crystals began to form in the corn oil causing melting thermograms to be evident, higher SFC, and a more viscous oil as a result. Using Ca(OH)2 as a catalyst resulted in more MAG formation, and a higher SFC and melting temperature than when KOH was used as a catalyst. CONCLUSION The results demonstrate that the chemical changes that result from transesterification of plant‐based oils change the crystallization behavior of the oils and can therefore be used for different applications in the food industry. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
ISSN:0022-5142
1097-0010
1097-0010
DOI:10.1002/jsfa.13706