GBSVM: An Efficient and Robust Support Vector Machine Framework via Granular-Ball Computing
Granular-ball support vector machine (GBSVM) is a significant attempt to construct a classifier using the coarse-to-fine granularity of a granular ball as input, rather than a single data point. It is the first classifier whose input contains no points. However, the existing model has some errors, a...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-07, Vol.PP, p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Granular-ball support vector machine (GBSVM) is a significant attempt to construct a classifier using the coarse-to-fine granularity of a granular ball as input, rather than a single data point. It is the first classifier whose input contains no points. However, the existing model has some errors, and its dual model has not been derived. As a result, the current algorithm cannot be implemented or applied. To address these problems, we fix the errors of the original model of the existing GBSVM and derive its dual model. Furthermore, a particle swarm optimization (PSO) algorithm is designed to solve the dual problem. The sequential minimal optimization (SMO) algorithm is also carefully designed to solve the dual problem. The latter is faster and more stable. The experimental results on the UCI benchmark datasets demonstrate that GBSVM is more robust and efficient. All codes have been released in the open source library available at: http://www.cquptshuyinxia.com/GBSVM.html or https://github.com/syxiaa/GBSVM. |
---|---|
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2024.3417433 |