Drug Evaluation of Parkinson’s Disease Patient-Derived Midbrain Organoids Using Mesoporous Au Nanodot-Patterned 3D Concave Electrode

Brain organoids are being recognized as valuable tools for drug evaluation in neurodegenerative diseases due to their similarity to the human brain’s structure and function. However, a critical challenge is the lack of selective and sensitive electrochemical sensing platforms to detect the response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2024-07, Vol.9 (7), p.3573-3580
Hauptverfasser: An, Joohyun, Shin, Minkyu, Beak, Geunyoung, Yoon, Jinho, Kim, Seewoo, Cho, Hyeon-Yeol, Choi, Jeong-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brain organoids are being recognized as valuable tools for drug evaluation in neurodegenerative diseases due to their similarity to the human brain’s structure and function. However, a critical challenge is the lack of selective and sensitive electrochemical sensing platforms to detect the response of brain organoids, particularly changes in the neurotransmitter concentration upon drug treatment. This study introduces a 3D concave electrode patterned with a mesoporous Au nanodot for the detection of electrochemical signals of dopamine in response to drugs in brain organoids for the first time. The mesoporous Au nanodot-patterned film was fabricated using laser interference lithography and electrochemical deposition. Then, the film was attached to a polymer-based 3D concave mold to obtain a 3D concave electrode. Midbrain organoids generated from Parkinson’s disease (PD) patient-derived iPSCs with gene mutations (named as PD midbrain organoid) or normal midbrain organoids were positioned on the developed 3D concave electrode. The 3D concave electrode showed a 1.4 times higher electrochemical signal of dopamine compared to the bare gold electrode. And the dopamine secreted from normal midbrain organoids or PD midbrain organoids on the 3D concave electrode could be detected electrochemically. After the treatment of PD midbrain organoids with levodopa, the drug for PD, the increase in dopamine level was detected due to the activation of dopaminergic neurons by the drug. The results suggest the potential of the proposed 3D concave electrode combined with brain organoids as a useful tool for assessing drug efficacy. This sensing system can be applied to a variety of organoids for a comprehensive drug evaluation.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.4c00476