Metal Variance in Multivariate Metal–Organic Frameworks for Boosting Catalytic Conversion of CO2
Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal–organic frameworks (MTV-MOFs) containing...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-07, Vol.146 (28), p.19271-19278 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal–organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO2. The catalytic performance of these MTV-MOFs can be engineered by fine-tuning the Ag/Cu ratio in the framework. Interestingly, the induction of 10% Ag remarkably improved the catalytic efficiency with a turnover frequency (TOF) of 243 h–1, which is 20-fold higher than that of 100% Cu-based MOF (i.e., TOF = 10.8 h–1). More impressively, such a bimetallic MOF still exhibited high catalytic activity even for simulated flue gas with 10% CO2 concentration. Furthermore, the reaction mechanism has been examined through the employment of NMR monitoring experiments and DFT calculations. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.4c04556 |