Universal Fragility of Spin Glass Ground States under Single Bond Changes

We consider the effect of perturbing a single bond on ground states of nearest-neighbor Ising spin glasses, with a Gaussian distribution of the coupling constants, across various two- and three-dimensional lattices and regular random graphs. Our results reveal that the ground states are strikingly f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-06, Vol.132 (24), p.247101, Article 247101
Hauptverfasser: Shen, Mutian, Ortiz, Gerardo, Liu, Yang-Yu, Weigel, Martin, Nussinov, Zohar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the effect of perturbing a single bond on ground states of nearest-neighbor Ising spin glasses, with a Gaussian distribution of the coupling constants, across various two- and three-dimensional lattices and regular random graphs. Our results reveal that the ground states are strikingly fragile with respect to such changes. Altering the strength of only a single bond beyond a critical threshold value leads to a new ground state that differs from the original one by a droplet of flipped spins whose boundary and volume diverge with the system size-an effect that is reminiscent of the more familiar phenomenon of disorder chaos. These elementary fractal-boundary zero-energy droplets and their composites feature robust characteristics and provide the lowest-energy macroscopic spin-glass excitations. Remarkably, within numerical accuracy, the size of such droplets conforms to a universal power-law distribution with exponents that depend on the spatial dimension of the system. Furthermore, the critical coupling strengths adhere to a stretched exponential distribution that is predominantly determined by the local coordination number.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.132.247101