Measurement-Based Infused Circuits for Variational Quantum Eigensolvers
Variational quantum eigensolvers (VQEs) are successful algorithms for studying physical systems on quantum computers. Recently, they were extended to the measurement-based model of quantum computing, bringing resource graph states and their advantages into the realm of quantum simulation. In this Le...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-06, Vol.132 (24), p.240601, Article 240601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variational quantum eigensolvers (VQEs) are successful algorithms for studying physical systems on quantum computers. Recently, they were extended to the measurement-based model of quantum computing, bringing resource graph states and their advantages into the realm of quantum simulation. In this Letter, we incorporate such ideas into traditional VQE circuits. This enables novel problem-informed designs and versatile implementations of many-body Hamiltonians. We showcase our approach on real superconducting quantum computers by performing VQE simulations of testbed systems including the perturbed planar code, Z_{2} lattice gauge theory, 1D quantum chromodynamics, and the LiH molecule. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.240601 |