Development of nanogap-rich hybrid gold nanostructures by use of two non-lithographic deposition techniques for a sensitive and reliable SERS biosensor

Practical application of surface-enhanced Raman spectroscopy (SERS) has suffered from several limitations by heterogeneous distribution of hot-spots, such as high signal fluctuation and the resulting low reliability in detection. Herein, we develop a strategy of more sensitive and reliable SERS plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical engineering letters 2024-07, Vol.14 (4), p.859-866
Hauptverfasser: Kwon, Hyuck Ju, Cho, Yong Jun, Yuk, Kyeong Min, Lee, Jonghwan, Choi, Seung Ho, Byun, Kyung Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Practical application of surface-enhanced Raman spectroscopy (SERS) has suffered from several limitations by heterogeneous distribution of hot-spots, such as high signal fluctuation and the resulting low reliability in detection. Herein, we develop a strategy of more sensitive and reliable SERS platform through designing spatially homogeneous gold nanoparticles (GNPs) on a uniform gold nanoisland (GNI) pattern. The proposed SERS substrate is successfully fabricated by combining two non-lithographic techniques of electron beam evaporation and convective self-assembly. These bottom-up methods allow a simple, cost-effective, and large-area fabrication. Compared to the SERS substrates obtained from two separate nanofabrication methods, Raman spectra measured by the samples with both GNPs and GNIs present a significant increase in the signal intensity as well as a notable improvement in signal fluctuation. The simulated near-field analyses demonstrate the formation of highly amplified plasmon modes within and at the gaps of the GNP-GNI interfaces. Moreover, the suggested SERS sensor is evaluated to detect the glucose concentration, exhibiting that the detection sensitivity is improved by more than 10 times compared to the sample with only GNI patterns and a fairly good spatial reproducibility of 7% is accomplished. It is believed that our suggestion could provide a potential for highly sensitive, low-cost, and reliable SERS biosensing platforms that include many advantages for healthcare devices.
ISSN:2093-9868
2093-985X
2093-985X
DOI:10.1007/s13534-024-00381-4