Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation

The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular basis of disease 2024-10, Vol.1870 (7), p.167327, Article 167327
Hauptverfasser: Aroca-Esteban, Javier, Souza-Neto, Francisco V., Aguilar-Latorre, Carlota, Tribaldo-Torralbo, Alba, González-López, Paula, Ruiz-Simón, Rubén, Álvarez-Villareal, Marta, Ballesteros, Sandra, de Ceniga, Melina Vega, Landete, Pedro, González-Rodríguez, Águeda, Martín-Ventura, José L., de las Heras, Natalia, Escribano, Óscar, Gómez-Hernández, Almudena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients. Protective role of let-7d-5p in atherosclerosis. The levels of let-7d-5p were significantly increased in carotid from overweight patients with advanced atherosclerosis (ACA) and in overweight patients with MeS and carotid atherosclerosis (CA). The increase of this miRNA provokes a significant decrease of its potential target expression IKKβ, as well as its phosphorylation. As a consequence, VSMCs maintain higher IκBα levels and reduced NF-κB activation, contributing to the protection against the inflammation present in atherosclerosis. On the other hand, let-7d-5p overexpression also produced a significant re
ISSN:0925-4439
1879-260X
1879-260X
DOI:10.1016/j.bbadis.2024.167327