Integrated metabolomics and network pharmacology analysis to explore pig bile-processed Rhizoma Coptidis and Fructus Evodiae sauce-processed Rhizoma Coptidis in lipopolysaccharide-induced inflammatory response

•Joint analysis using cell metabolomics and network pharmacology strategies.•12 differential metabolites and 25 target proteins overlapping among HL group, DHL group and YHL group were related to inflammation.•The first 4 metabolic pathways of anti-inflammatory effects of DHL and YHL were coincident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2024-08, Vol.1243, p.124192, Article 124192
Hauptverfasser: Wang, Jing, Wu, Songnan, Gao, Hui, Yu, Caina, Chen, Xuelian, Yuan, Zimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Joint analysis using cell metabolomics and network pharmacology strategies.•12 differential metabolites and 25 target proteins overlapping among HL group, DHL group and YHL group were related to inflammation.•The first 4 metabolic pathways of anti-inflammatory effects of DHL and YHL were coincident.•DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL.•9 active ingredients of DHL and 12 active ingredients of YHL were screened out. Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a “disease-target-differential metabolites-active ingredients” network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1β levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significan
ISSN:1570-0232
1873-376X
1873-376X
DOI:10.1016/j.jchromb.2024.124192