Novel paper-based potentiometric combined sensors using coumarin derivatives modified with vanadium pentoxide nanoparticles for the selective determination of trace levels of lead ions
Novel miniaturized Pb(II) paper-based potentiometric sensors are described using coumarin derivatives I and II as electroactive ionophores and nano vanadium pentoxide as a solid contact material for the sensitive and selective monitoring of trace lead ions. Density functional theory (DFT) confirms o...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2024-07, Vol.191 (7), p.427, Article 427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel miniaturized Pb(II) paper-based potentiometric sensors are described using coumarin derivatives I and II as electroactive ionophores and nano vanadium pentoxide as a solid contact material for the sensitive and selective monitoring of trace lead ions. Density functional theory (DFT) confirms optimum geometries, electronic properties, and charge transfer behaviors of 1:2 Pb(II): coumarin complexes. The sensors are prepared by using two strips of 20 × 5 mm filter paper with two circular orifices. One orifice is coated with vanadium pentoxide (V
2
O
5
) nanoparticles in colloidal conductive carbon as a solid-contact, covered by a PVC membrane containing coumarin ionophore to act as a sensing probe. The other orifice is treated with Ag/AgCl in a polyvinyl butyral (PVB) film, to act as a reference electrode. Sensors with ionophores (I) and (II) exhibit Nernstian slopes of 27.7 ± 0.2 and 30.2 ± 0.2 mV/decade over the linear concentration range 4.5 × 10
−7
to 6.2 × 10
−3
M and 8.5 × 10
−8
to 6.2 × 10
−3
M, with detection limits of 1.3 × 10
−7
M (26.9 ppb) and 2.1 × 10
−8
M (4.4 ppb), respectively. The sensors are satisfactorily used for accurate determination of lead ions in drinking water, lead-acid battery wastewater, and electronic waste leachates. The results compare favourably well with data obtained by flameless atomic absorption spectrometry.
Graphical abstract |
---|---|
ISSN: | 0026-3672 1436-5073 1436-5073 |
DOI: | 10.1007/s00604-024-06494-y |