Photochromic Ln-MOFs: A Platform for Metal-Photoswitch Cooperativity
Optoelectronic devices based on lanthanide-containing materials are an emergent area of research due to imminent interest in a new generation of diode materials, optical and magnetic sensors, and ratiometric thermometers. Tailoring material properties through the employment of photo- or thermochromi...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2024-07, Vol.63 (28), p.12810-12817 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optoelectronic devices based on lanthanide-containing materials are an emergent area of research due to imminent interest in a new generation of diode materials, optical and magnetic sensors, and ratiometric thermometers. Tailoring material properties through the employment of photo- or thermochromic moieties is a powerful approach that requires a deep fundamental understanding of possible cooperativity between lanthanide-based metal centers and integrated switchable units. In this work, we probe this concept through the synthesis, structural analysis, and spectroscopic characterization of novel photochromic lanthanide-based metal–organic materials containing noncoordinatively integrated photoresponsive 4,4′-azopyridine between lanthanide-based metal centers. As a result, a photophysical material response tailored on demand through the incorporation of photochromic compounds within a rigid matrix was investigated. The comprehensive analysis of photoresponsive metal–organic materials includes single-crystal X-ray diffraction and diffuse reflectance spectroscopic studies that provide guiding principles necessary for understanding photochromic unit-lanthanide-based metal–organic framework (MOF) cooperativity. Furthermore, steady-state and time-resolved diffuse reflectance spectroscopic studies revealed a rapid rate of photoresponsive moiety attenuation upon its integration within the rigid matrix of lanthanide-based MOFs in comparison with that in solution, highlighting a unique role and synergy that occurred between stimuli-responsive moieties and the lanthanide-based MOF platform, allowing for tunability and control of material photoisomerization kinetics. |
---|---|
ISSN: | 0020-1669 1520-510X 1520-510X |
DOI: | 10.1021/acs.inorgchem.4c01283 |