Diagnosis and classification of kidney transplant rejection using machine learning-assisted surface-enhanced Raman spectroscopy using a single drop of serum

The quest to reduce kidney transplant rejection has emphasized the urgent requirement for the development of non-invasive, precise diagnostic technologies. These technologies aim to detect antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR), which are asymptomatic and pose a risk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2024-10, Vol.261, p.116523, Article 116523
Hauptverfasser: Lee, Sanghwa, Kim, Jin-Myung, Lee, Kwanhee, Cho, Haeyon, Shin, Sung, Kim, Jun Ki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quest to reduce kidney transplant rejection has emphasized the urgent requirement for the development of non-invasive, precise diagnostic technologies. These technologies aim to detect antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR), which are asymptomatic and pose a risk of potential kidney damage. The protocols for managing rejection caused by ABMR and TCMR differ, and diagnosis has traditionally relied on invasive biopsy procedures. Therefore, a convergence system using a nano-sensing chip, Raman spectroscopy, and AI technology was introduced to facilitate diagnosis using serum samples obtained from patients with no major abnormality, ABMR, and TCMR after kidney transplantation. Tissue biopsy and Banff score analysis were performed across the groups for validation, and 5 μL of serum obtained at the same time was added onto the Au–ZnO nanorod-based Surface-Enhanced Raman Scattering sensing chip to obtain Raman spectroscopy signals. The accuracy of machine learning algorithms for principal component-linear discriminant analysis and principal component-partial least squares discriminant analysis was 93.53% and 98.82%, respectively. The collagen (an indicative of kidney injury), creatinine, and amino acid-derived signals (markers of kidney function) contributed to this accuracy; however, the high accuracy was primarily due to the ability of the system to analyze a broad spectrum of various biomarkers.
ISSN:0956-5663
1873-4235
1873-4235
DOI:10.1016/j.bios.2024.116523