Estimation of firing rate from instantaneous interspike intervals

The rate coding hypothesis is the oldest and still one of the most accepted hypotheses of neural coding. Consequently, many approaches have been devised for the firing rate estimation, ranging from simple binning of the time axis to advanced statistical methods. Nonetheless the concept of firing rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience research 2024-06
Hauptverfasser: Kostal, Lubomir, Kovacova, Kristyna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rate coding hypothesis is the oldest and still one of the most accepted hypotheses of neural coding. Consequently, many approaches have been devised for the firing rate estimation, ranging from simple binning of the time axis to advanced statistical methods. Nonetheless the concept of firing rate, while informally understood, can be mathematically defined in several distinct ways. These definitions may yield mutually incompatible results unless implemented properly. Recently it has been shown that the notions of the instantaneous and the classical firing rates can be made compatible, at least in terms of their averages, by carefully discerning the time instant at which the neuronal activity is observed. In this paper we revisit the properties of instantaneous interspike intervals in order to derive several novel firing rate estimators, which are free of additional assumptions or parameters and their temporal resolution is ’locally self-adaptive’. The estimators are simple to implement and are numerically efficient even for very large sets of data. •We propose a novel type of estimation of neuronal firing rate.•The method is free of parameters that would need to be optimized and its temporal resolution is locally adaptive.•The estimators are simple to implement and are numerically efficient even for very large sets of data.
ISSN:0168-0102
1872-8111
1872-8111
DOI:10.1016/j.neures.2024.06.006