A novel virtual robotic platform for controlling six degrees of freedom assistive devices with body-machine interfaces
Body-machine interfaces (BoMIs)—systems that control assistive devices (e.g., a robotic manipulator) with a person’s movements—offer a robust and non-invasive alternative to brain-machine interfaces for individuals with neurological injuries. However, commercially-available assistive devices offer m...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-08, Vol.178, p.108778, Article 108778 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Body-machine interfaces (BoMIs)—systems that control assistive devices (e.g., a robotic manipulator) with a person’s movements—offer a robust and non-invasive alternative to brain-machine interfaces for individuals with neurological injuries. However, commercially-available assistive devices offer more degrees of freedom (DOFs) than can be efficiently controlled with a user’s residual motor function. Therefore, BoMIs often rely on nonintuitive mappings between body and device movements. Learning these mappings requires considerable practice time in a lab/clinic, which can be challenging. Virtual environments can potentially address this challenge, but there are limited options for high-DOF assistive devices, and it is unclear if learning with a virtual device is similar to learning with its physical counterpart. We developed a novel virtual robotic platform that replicated a commercially-available 6-DOF robotic manipulator. Participants controlled the physical and virtual robots using four wireless inertial measurement units (IMUs) fixed to the upper torso. Forty-three neurologically unimpaired adults practiced a target-matching task using either the physical (sample size n = 25) or virtual device (sample size n = 18) involving pre-, mid-, and post-tests separated by four training blocks. We found that both groups made similar improvements from pre-test in movement time at mid-test (Δvirtual: 9.9 ± 9.5 s; Δphysical: 11.1 ± 9.9 s) and post-test (Δvirtual: 11.1 ± 9.1 s; Δphysical: 11.8 ± 10.5 s) and in path length at mid-test (Δvirtual: 6.1 ± 6.3 m/m; Δphysical: 3.3 ± 3.5 m/m) and post-test (Δvirtual: 6.6 ± 6.2 m/m; Δphysical: 3.5 ± 4.0 m/m). Our results indicate the feasibility of using virtual environments for learning to control assistive devices. Future work should determine how these findings generalize to clinical populations.
•We developed a novel virtual body-machine interface (BoMI) to control assistive robots.•We compared motor learning with the virtual BoMI to a physical replica.•Learning with the virtual platform was similar to the physical platform.•Our virtual BoMI could serve as a potential adjunct for assistive rehabilitation.•The proposed interface could also be a useful tool for motor learning experiments. |
---|---|
ISSN: | 0010-4825 1879-0534 1879-0534 |
DOI: | 10.1016/j.compbiomed.2024.108778 |