Genetically engineered long-acting Esculentin-2CHa(1−30) fusion protein with potential applicability for the treatment of NAFLD

Esculentin-2CHa(1–30) (‟ESC”) has been reported as a potent anti-diabetic peptide with little toxicity. However, its very short plasma residence time severely limits the therapeutic efficacy. To address this issue, we genetically engineered a fusion protein of tandem trimeric ESC with an albumin bin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2024-08, Vol.372, p.699-712
Hauptverfasser: Lee, Jaewoong, Amatya, Reeju, Kim, Kyung Eun, Park, Young-Hoon, Hong, Eunmi, Djayanti, Krismala, Min, Kyoung Ah, Roh, Gu Seob, Shin, Meong Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Esculentin-2CHa(1–30) (‟ESC”) has been reported as a potent anti-diabetic peptide with little toxicity. However, its very short plasma residence time severely limits the therapeutic efficacy. To address this issue, we genetically engineered a fusion protein of tandem trimeric ESC with an albumin binding domain (ABD) and a fusion partner, SUMO (named ‟SUMO-3×ESC-ABD”). The SUMO-3×ESC-ABD, successfully produced from E. coli, showed low cellular and hemolytic toxicity while displaying potent activities for the amelioration of hyperglycemia as well as non-alcoholic fatty liver disease (NAFLD) in vitro. In animal studies, the estimated plasma half-life of SUMO-3×ESC-ABD was markedly longer (427-fold) than that of the ESC peptide. In virtue of the extended plasma residence, the SUMO-3×ESC-ABD could produce significant anti-hyperglycemic effects that lasted for >2 days, while both the ESC or ESC-ABD peptides elicited little effects. Further, twice-weekly treatment for 10 weeks, the SUMO-3×ESC-ABD displayed significant improvement in blood glucose control with a reduction in body weight. Most importantly, a significant improvement in the conditions of NAFLD was observed in the SUMO-3×ESC-ABD-treated mice. Along the systemic effects (by improved glucose tolerance and body weight reduction), direct inhibition of the hepatocyte lipid uptake was suggested as the major mechanism of the anti-NAFLD effects. Overall, this study demonstrated the utility of the long-acting SUMO-3×ESC-ABD as a potent drug candidate for the treatment of NAFLD. [Display omitted]
ISSN:0168-3659
1873-4995
1873-4995
DOI:10.1016/j.jconrel.2024.06.061