Nanoplastics trigger the aging and inflammation of porcine kidney cells
Nanoplastics have now become a pervasive contaminant, being detected in various environmental media. However, our understanding of the specific toxicological effects of nanoplastics (NPs) on the kidneys remains unclear, which is a scientific problem that needs to be solved. To address this question,...
Gespeichert in:
Veröffentlicht in: | Toxicology (Amsterdam) 2024-08, Vol.506, p.153870, Article 153870 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoplastics have now become a pervasive contaminant, being detected in various environmental media. However, our understanding of the specific toxicological effects of nanoplastics (NPs) on the kidneys remains unclear, which is a scientific problem that needs to be solved. To address this question, we employed two kidney cell lines as in vitro models to study the toxicological effects of NPs on porcine kidney cells. Firstly, we observed that NPs can be internalized into the cytoplasm in a time- and dose-dependent manner by using a laser confocal microscope. We further discovered that NPs can trigger inflammatory responses and lead to porcine kidney cell senescence by detection of senescence marker molecules. Furthermore, the potential molecular mechanism(s) by which NPs induce porcine kidney cell senescence were explored, we found that NPs induce oxidative stress in the porcine kidney cells, leading to the accumulation of reactive oxygen species (ROS) within mitochondria, ultimately triggering inflammatory responses and senescence in the kidney cells. In summary, our experimental results not only provide new evidence for the toxicity of NPs but also offer new ideas and directions for future research. This discovery will aid in our deeper understanding of the potential health impacts of NPs on domestic pigs. |
---|---|
ISSN: | 0300-483X 1879-3185 1879-3185 |
DOI: | 10.1016/j.tox.2024.153870 |