Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I

Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-09, Vol.63 (37), p.e202409372-n/a
Hauptverfasser: Han, Guopeng, Daniels, Luke M., Vasylenko, Andrij, Morrison, Kate A., Corti, Lucia, Collins, Chris M., Niu, Hongjun, Chen, Ruiyong, Roberston, Craig M., Blanc, Frédéric, Dyer, Matthew S., Claridge, John B., Rosseinsky, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10−2 S cm−1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state‐of‐the‐art Li+ ion conducting materials. Isovalent substitution of Ge4+ for Si4+ in Li7Si2–xGexS7I is observed for x≤1.2. Control of unit cell volume via this substitution enhances Li+ site disorder beyond Li7Si2S7I. This extensive disorder is stabilised to 30 K with very low activation energies observed by 7Li NMR, yielding low temperature Li+ transport in highly substituted (x=1 & 1.2) materials that is comparable to best‐in‐class solid‐state electrolytes.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202409372